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PEEFACE

The subjects treated in elementary text-books of astronomy which

are most difficult and discouraging to the beginner are those which

deal with the diurnal motion of the heavens and the apparent

motions of the sun, moon, and planets among the stars. A clear

conception of these fundamental facts is, however, necessary to

a proper understanding of many of the striking phenomena to

which the study of astronomy owes its hold upon the intellect and

the imagination.

No adequate notion of those subjects which involve the ideas of

force and mass can be given to the average student who has not

mastered the elements of mechanics ; but to explain the motions

of the heavenly bodies, the knowledge of a few principles of solid

geometry and of the properties of the ellipse will suflB.ce, — no

more, indeed, than may be easily explained in the pages of the

text-book itself.

Most of the difficulties which arise at the outset of the study may
be satisfactorily met by methods which require the student to make

and discuss simple observations and to solve simple problems. ' This

necessity is recognized in many recent text-books which introduce

such methods to a greater or less extent, — in all cases to great

advantage and in some with marked success. I have gathered in

this book some of those which I have found practicable, intending

that they should explain in natural sequence those phenomena which

depend on the diurnal motion, the moon's motion in her orbit and

the change in position of that orbit, the motion of the sun in the

ecliptic, and the geocentric motions of the planets.

The methods chosen may be carried out with fair-sized classes

and do not require a place of observation favored with an extensive

view of the heavens. The gnomon-pin, the hemisphere, the cross-

staff, a simple apparatus for measuring altitude and azimuth which
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may be converted into an equatorial by inclining it at the proper

angle, together with a few maps and diagrams, form an outfit so

inexpensive that it may be supplied to each pupil, and much work

may be done at home. It is obvious that the possibility thus oifered

of utilizing favorable opportunities for observation is especially

valuable in a study which is so much dependent on the weather.

All members of the class, too, will be doing the same or similar

work at the same time, — a principle of cardinal importance in

elementary laboratory work with large classes.

The meridian work of Chapter VI is added for the sake of logical

completeness, to explain the determination of the zero of right

ascensions,— a subject which is usually neglected in the text-books

and would not be included in an ordinary course.

Nothing has been directly planned for teaching the names of the

constellations and the use of star maps. The work of Chapters II,

III, and IV, covering a period of some months, results in a very

good acquaintance with the principal stars and asterisms. It may
be assumed, too, that the teacher is familiar with the heavens and

will gather the class as early as possible to introduce them at least

to the polar constellations.

The book is intended primarily for teachers,' but much of it is

suitable for use as a text-book, in spite of its rather condensed

form. It is meant to be used in connection with one of the many
admirable text-books on descriptive astronomy adapted to high-

school pupils.

The first six chapters were printed in 1900, and various changes

and additions might now be made, notably an improvement in the

protractor for laying off altitudes on the hemisphere, which is now
so constructed that it may be used as a ruler for the accurate draw-

ing of great circles. This permits a much simpler determination of

the pole of a small circle than that described in the first chapter.

KOBERT "W. WILLSON
Harvard TJnitersitt

Students' Asteonomical Labokatokt

December, 1905
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CHAPTER I

THE DIURNAL MOTION OF THE SUN

The most obvious and important astronomical phenomenon that

men observe is the succession of day and night, and the motion of

the sun which causes this succession is naturally the first object of

astronomical study. Every one knows that the sun rises in the east

and sets in the west, but very many educated people know little

more of the course of the sun than this. The first task of the

beginner in astronomy should be to observe, as carefully as possible,

the motion of the sun for a day. What is to be observed then ?

A little thought shows that it can only be the direction in which

we have to look to see it at different times ; that is, toward what

point of the compass — how far above the ground. All astronom-

ical observation, indeed, comes down ultimately to this — the direc-

tion in which we see things. The strong light of the sun enables

us to make use of a very simple method depending on the principle

that the shadow of a body lies in the same straight line with the

body and the source of light.

Path of the Shadow of a Pin-head. — If we place a pin upright on

a horizontal plane in the sunlight and mark the position of the

shadow^ of its head at any time, we thus fix the position of the

sun at that time, since it is in the prolongation of the line drawn

from the shadow to the pin-head. In order to carry out systematic

1
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observations by this method in such a form that the results may be

easily discussed, it will be convenient to have the following appa-

ratus : (1) A firm table in such a position as to receive sunlight for

as long a period as possible. It is better that it should be in the

open air, in which case it may be made by driving small posts into

Fig. 1

the ground and securely fastening a stout plank about 18 inches

square as a top. (2) A board, 18 inches long and 8 inches broad,

furnished with leveling screws and smoothly covered with white

paper fastened down by (3) thumb tacks. (4) A lecel for leveling

the board, (o) A compass. (6) A glass plate, 6 inches long and

2 inches broad, along the median line of which a straight black

line is drawn. (7) A pin, 5 cm. long, with a spherical head and

an accurately turned base for setting it vertical. (8) A timejnece.

Draw a straight pencU line across the center of the paper as

Fig. 2

nearly as possible perpendicular to the length of the board. Place

the board upon the table and level approximately. Put the com-

pass on the middle of the pencil line and put the glass plate on the

compass with its central line over the center of the needle ; turn

the plate till its median line is parallel to the pencil line (Fig. 2),
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and swing the whole board horizontally, till the needle is parallel to

the two lines, which are then said to be in the magnetic meridian.

Press the leveling screws firmly into the table, and thus make dents

by which the board may at any future time be placed in the same
position without the renewed use of the compass. Level the board

Tig. 3

carefully, placing the level first east and west, then north and south.

Place the pin in the pencil line,— in the center if the observation

is made between March 20 and September 20, but near the south-

ern edge of the board at any other time of the year,— pressing it

firmly down till the base is close to the paper, so that the pin is

perpendicular to the paper. Mark with a hard pencil the estimated

center of the shadow of the pin-head, A (Pig. 3), noting the time by

the watch to the nearest minute, affix a number or letter, and affix

the same number to the recorded time of the observation in the

note-book. It is a good plan to use pencil for notes made while

observing, and ink for computations or notes added afterward in

discussing them. Repeat at hourly, or better half-hourly, intervals,

thus fixing a set of points (Pig. 4), through which a continuous

curve may be drawn showing the path of the shadow for several

hours. The same observation should be repeated two weeks later.
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ALTITUDE AND BEARING

By the foregoing process we obtain a diagram on which is shown

the position of the pin point, a magnetic meridian line through this

point, and a series of numbered points showing the position of the

shadow of the pin-head at different times ; the height of the pin is

known and also the fact that its head was in the same vertical line

with its point.

In the discussion of these results, it will be convenient to proceed

as follows

:

Eemove the pin and draw with a hard pencil a fine line, AB
(Fig. 5), through the pinhole and the point marked at the first obser-

vation. This line is called a line of bearing, and the angle which

Fig. 5

it makes with the magnetic meridian is called the magnetic bearing

of the line. This angle, which may be directly measured on the

diagram by a protractor, fixes the position of the vertical plane which
contains the observed point and passes also through the center of

the pin-head and the sun. If this point bears N.W. from the pin,

the sun evidently bears S.E.

Imagine a line, A C (Eig. 3), connecting the observed point with the

sun's center and passing also through the center of the pin-head.

The position of the sun in the vertical plane is evidently fixed by
this line. The angle between the line of bearing and this line, BA C,

is called the altitude of the sun ; it measures, by the ordinary con-

vention of solid geometry, the angle between the sun's direction

and the plane of the horizon.
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To determine this angle, lay ofE the line B'C (Fig. 6), equal in

length to the pin, 5 cm., draw a perpendicular through B', and by
means of a pair of compasses or scale laid

between the two points A and B (Fig. 6),

lay off the line A'B' on the perpendicular,

draw A'C, and measure the angle B'A'C
by a protractor. We now have the bearing

and altitude of the sun at the time of the

first observation, the bearing of the sun

from the pin being opposite to that of

the point from the pin. In like manner
the altitude and bearing are determined for

each observed point upon the path of the

shadow, and noted against the correspond-

ing time, in the note-book (to avoid con-

fusion, it is convenient to make a separate

figure for the morning and afternoon

observations, as shown in Fig. 6). We
have thus obtained a series of values

which wiU enable us to study more easily

the path of the sun upon the concave of

the sky.

Plotting the Sun's Path on a Spherical Surface Probably the

most evident method of accomplishing this object would be to

Fig. 6

Fig. 7

construct a small concave portion of a sphere, as in the accom-

panying figure, which suggests how the position of the sun might

be referred to the inside of a glass shell.
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But tlie hollow surface offers difficulty in construction and

manipulation, and it requires but little stretch of the imagination

to pass to the convex surface as follows. The glass shell, as

seen from the other side, would appear thus

:

and we can more readil}- get at it to measure it, and moreover can

more easily recognize the properties of the lines which we shall

come to draw upon it, since we are used to looking upon spheres

from the outside rather than from the inside, except in the case of

the celestial sphere. .

On both Pigs. 7 and 8 is showTi a group of dots which have

nearly the configuration of a group of stars conspicuous in the

southern heavens in midsummer and called the constellation of

Scorpio. It is evident that the constellation has the same shape in

both cases, except that in Fig. 8 it is turned right for left or semi-

inverted, as is the image of an object seen in a mirror. This prop-

erty obviously belongs to all figures drawn on the concave surface

as seen from the center, when they are looked at from the outside

directly toward the center.

So also the diurnal motion of the sun, which as we see it

from the center is from left to right, would be from right to

left as viewed from the outside of such a surface. This latter

is so slight an inconvenience that it is customary to represent

the motions of the heavenly bodies in the sky upon an opaque
globe, and to determine the angles which these bodies describe

about the center, by measuring the corresponding arcs upon the

convex surface.
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Plotting on a Hemisphere.— The apparatus required for plotting

the sun's path consists of ; a hemisphere, a, 4^ inches in diameter

;

a circular protractor, h, a quadrantal protractor, c, of 2^ inches

Fig. 9

radius, and a pair of compasses, d, whose legs may be bent and one

of which carries a hard pencil point.

Determine by trial with the compasses the center of the base of

the hemisphere, and mark two diameters by drawing straight lines

upon the base at right angles through the center. Prolong these by

marks about ^ inch in length upon the convex surface. Place the

hemisphere exactly central upon the circular protractor, by bring-

ing the marked ends of one of the diameters upon those divisions

of the protractor which are numbe'red 0° and 180°, and the other on

the divisions numbered 90° and 270°. Determine and mark the
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highest point of the hemisphere by placing the quadrant with its

base upon the circular protractor, and its arc closely against the

sphere, and marking the end of the scale (Fig. 10). Repeat this

with the arc in four positions, 90° apart on the base. The points

thus determined should coincide ; if they do not, estimate and mark

the center of the four points thus obtained. This point represents

the highest point of the dome of the heavens— the point directly

overhead, called the zenith, and the zero and 180° points on the base

protractor may be taken as representing the south and north points

respectively of the magnetic meridian.

The Sun's Path a Circle.— To plot the altitude and bearing of the

first observation, place the foot of the quadrant or altitude arc

close against the sphere, the foot of its graduated face on the

degree of the protractor which corresponds to the bearing. Mark

a fine point on the sphere at that degree of the altitude arc corre-

sponding to the altitude at the first observation. This point fixes

the direction in which the sun would have been seen from the center

of the hemisphere at the time of observation if the zero line had

been truly in the magnetic meridian. Proceed in the same manner

with the other observations of bearing and altitude, and thus obtain

Fig. 11

a series of points (Fig. 11), through which may be drawn a con-

tinuous line representing the sun's path upon that day.

It will appear at once that the arcs between the successive points

are of nearly equal length if tKe times of observation were equi-

distant, and otherwise are proportional to the intervals of time
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between the corresponding observations— a property which does

not at all belong to the shadow curve from which the points are

derived. We thus have a noteworthy simplification in referring

our observations to the sphere. It will also appear that a sheet of

stiff paper or cardboard may be held edgewise between the hemi-

sphere and the eye, so as to cover all the points ; that is, they all

lie in the same plane. This' fact shows that the sun's path is a

circle on the sphere. It is shown by the principles of solid geometry

that all sections of the sphere by a plane are circles. If the plane

of the circle passes through the center, it is the largest possible, its

radius being equal to that of the sphere ; it is then called a great

circle. Near the 20th of March and 22d of September it will be

found that the path of the shadow is nearly a straight line on the

diagram, and that the path of the sun is nearly a great circle ; that

is, the plane of this circle passes nearly through the center of the

sphere. In general, the shadow path is a curve, with its concave

side toward the pin in summer and its convex side toward it in

winter, while the path on the sphere is a small circle, that is, its

plane does not pass through the center of the sphere.

Determining the Pole of the Circle.— It is proved by solid geometry

that all points of any circle on the sphere are equidistant from two



10 LABORATORY ASTROKOMT

points on tlie sphere, called the poles of the circle. It is important

to determine the pole of the sun's diurnal path.

Estimate as closely as possible the position on the sphere of a

point which is at the same distance from all the observed points of

the sun's path and open the compasses to nearly this distance. For

a closer approximation to the position of the pole, place the steel

point of the compasses at the point on the hemisphere correspond-

ing to the first observation, a, and with the other (pencil) point draw

a short arc, m (Fig. 12), near the estimated pole. Draw the ai'c n

from the point of the

last observation, c, and

join these two arcs by

a third drawn from an

observed point, b, as

near as possible to the

middle of the path;

the pole of the sun's

diurnal circle will lie

nearly on the great

circle drawn from b to

the middle point o of

the are last drawn.

Place the steel point

at 0, and the pencil

point at b, and try the

distance of the pencil

point from the sun's

path at either ex-

tremity. If the pencil point lies above (or below) the path at both
extremities, the compasses must be opened (or closed) slightly and
the assumed pole shifted directly away from (or toward) the middle
of the path.

The proper opening of the compasses is thus quickly determined
as well as a close approximation to the position of the pole. Place
the steel point at this new position, p, the pencil point at b, and
again test the extreme points. If the west end of the path is below
the pencil point (Fig. 13), the latter should be brought directly down

Fig. 13
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to the path by shifting the steel point on the sphere in the plane
of the compass legs, that is, along the great circle from p to s.

From the point thus found a circle can be described with the
compasses so as to pass approximately through all the observed
points

; that is, this point is the pole of the sun's path, and when
it is fixed as exactly as possible a circle is to be drawn from horizon
to horizon which will represent the sun's path from the point of

sunrise to that of sunset, and passing very nearly through all the
observed points. The bearing of the points of sunrise and sunset
may then be read off on the horizontal circle.

THE MERIDIAN

The pole as thus determined marks a very interesting and
important point in the heavens. We will draw a great circle

through the zenith and the pole. To do this, place the altitude arc

against the sphere, as if to measure the altitude of the pole ; and

using it as a guide, draw the northern quadrant of the vertical

circle through the zenith and the pole. Note the bearing of this

vertical circle. Place the altitude arc at the opposite bearing, and

draw another or southern quadrant of the same great circle till it

meets the south horizon. This great circle (Fig. 14) is called the

meridian of the place of observation, and its plane is called the

plane of the meridian of the place of observation, — sometimes

the true meridian, to distinguish it from the magnetic meridian.
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The line in which it cuts the base of the hemisphere represents the

meridian line or true meridian line, just as the line first drawn repre-

sents the line of the magnetic meridian. If the observations are made

in the United States, near a line di-awn from Detroit to Savannah,

it will be found that the true meridian coincides very nearly with

the magnetic meridian. East of the line joining these cities, the

north end of the magnet points to the west of the true meridian by

the amounts given in the following table

:

21° at the extreme N.E. boundary of Maine.

15 at Portland.

10 at Albany and New Haven.

5 at Washington and Buffalo.

While on the west the declination, as it is called, is to the east of the

true meridian.

5° at St. Louis and New Orleans.

10 at Omaha and El Paso.

15 at Deadwood and Los Angeles.

20 at Helena, Montana, and C. Blanco.

23 at the extreme N.W. boundary of the United States.

By drawing these lines on the map, as in Fig. 15, it is easy to

estimate the declinations at intermediate points within one or two

degrees,— at the present time west declinations in the United States

are increasing and east declinations decreasing by about 1° in fifteen

years.

A great circle perpendicular to the meridian may be drawn by

placing the altitude protractor at readings 90° and 270° from the

meridian reading and drawing arcs to the zenith in each case.

This circle is the prime vertical, and intersects the horizon in the

east and west points ; thus all the cardinal points are fijced by the

meridian determined from our plotting of the sim's path.

Azimuth Place the hemisphere upon the circular protractor iu

such a position that the line of the true meridian on the hemisphere

coincides with the zero line of the protractor.

Place the altitude arc so as to measure the altitude at any part of

the sun's path west of the meridian (Fig. 16). The reading of the

foot of the arc will give the angle between the true meridian and
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the vertical plane containing the sun at that point of its diurnal

circle. This angle is its true bearing and differs from its magnetic

FlQ. 15

bearing by the declination of the compass, being evidently less than

the magnetic bearing, if the declination is west of north. It is also

called the azimuth of the sun's vertical circle, or, briefly, of the sun.

Fig. 16

Formerly azimuth was usually reckoned from north through the

west or east, to 180° at the south point. It is now customary to

measure it from south through west up to 360°, so that the azimuth
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of a body when east of the meridian lies between 180° and 360°.

The present method is more convenient because the given angle

fixes the position of the vertical circle without the addition of the

letters E. and W. It is worthy of notice that with this notation

the azimuth of the sun as seen in northern latitudes outside of the

tropics always increases with the time ; and indeed this is true of

most of the bodies we shall have occasion to observe.

Now place the altitude quadrant so that its foot is at a point on

the circular protractor where the reading is 360° minus the azimuth

of the point just measured ; the sun at this point of its path is just as

far east of the meridian as it was west of the meridian at the point

last considered, and it will be found that the altitude of the two

points is the same. On the path shown in Fig. 16 the altitude is

45° at the points whose azimuths are 60° and 300° (60 E. of S.).

This fact, that equal altitudes of the sun correspond to equal

azimuths east and west of the true meridian, is an important one,

and will presently be made use of to enable us to determine the

position of the true meridian with a greater degree of precision.

THE EQUINOCTIAL

We shall find it convenient to draw upon the hemisphere another

line, which plays an important role in astronomy, the great circle

90° from the pole. Placing the steel point of the compasses at

the zenith, open the legs until the pencil point just comes to the

horizon plane where the spherical surface meets it, so that if it

were revolved about the zenith, the pencil point would move in

the horizon. The compass points now span an arc of 90° upon the

hemisphere. Place the steel point at the pole, and draw as much
of a great circle as can be described on the sphere above the horizon.

This will be just one-half of the great circle, and will cut the horizon

in the east and west points. The new circle is called the equinoctial

or celestial equator (Fig. 17).

We have seen that the path of the sun over the dome of the

heavens appears to be a small circle described from east to west
about a fixed point in the dome as a pole. The ancient explanation
of this fact was that the sun is fixed in a transparent spherical shell
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of immense size revolving daily about an axis, the earth being a

plane in the center of unknown extent, but whose known regions

are so small compared to the shell that from points even widely-

separated on the earth the appearance is the same
;

just as the

Fig. 17

apparent direction and motion of the sun would be practically

the same on our hemisphere to a microscopic observer at the

center, and to another anywhere within one-hundredth of an inch

of the center. When observations were made, however, at points

some hundreds of miles apart on the same meridian, very per-

ceptible differences were found, whose nature will be understood

from a comparison of the hemisphere (Fig. 18 a), plotted from

observations made Aug. 8, 1897, at a point in Canada, not far

from Quebec, with a second hemisphere (Fig. 18 J), on which is

shown the path of the sun on the same date derived from observa-

tion of the shadow of a pin-head at Polfos in Norway. It appears

on comparison that the distance of the pole above the north horizon
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is considerably greater in the latter, -while the equator is just as

much nearer the southern horizon ; the sun is at the same distance

from the equator in each case. This fact cannot be explained on

the supposition that the horizon planes of the two places are the

same, for in that case we should have the spherical shell which

contains the sun revolving at the same time about two different

fixed axes, which is impossible. It is not, however, improbable

that the earth's surface should be curved, if we can admit as

a possibility that the direction of gravity, which is perpendicular

to a horizontal plane, may be different at different places. That

the earth's surface in the east and west direction is curved, we

know; for men have traversed it from east to west and returned

to the starting point, so that we have good reason to believe that its

surface is everywhere curved. Long before this conclusive proof

was obtained, however, the globular form of the earth was inferred

on good grounds.

It was early suggested (regarding the fact that, .if the sun is fixed

in a shell, that shell is of enormous size as compared with the earth)

that it is inherently more probable that the apparent motion of

the sun is due to a rotation of the spherical earth about an axis

passing through the earth's center and the poles of the sun's circle.

This argument is greatly strengthened when we investigate the

apparent motion of the stars in connection with their size and dis-

tance, and it is now beyond a doubt that this is the true explanation

of the apparent diurnal motion of the sun.

LATITUDE EQUALS ELEVATION OF THE POLE

This subject is treated in all text-books on descriptive astronomy,

and it is pointed out that the pole of the sun's path is the point

where the line of the earth's axis of rotation cuts the sky, and the

equinoctial or celestial equator is the great circle in which the plane

of the earth's equator cuts the sky. The fact is proved also that

the elevation of the pole above the horizon at any place is equal to

the latitude of the place.

This angle, as measured on the hemisphere shown in Fig. 18 a, is

47°, and on the hemisphere of Fig. 18 b is 62°. The latitudes of
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Quebec and Polfos as determined by more accurate measures are
46° 60' and 61° 57'-

It is easy to see that the arc of the meridian from the zenith
to the equinoctial is also equal to the latitude, while the arc from
the south point of the horizon to the equator and that from the
zenith to the pole are each equal to 90° minus the latitude, or, as it

is usually called, the co-latitude.

It will be well here, as in all our measurements, to form some idea
of the accuracy of our results. As one degree on our hemisphere
is quite exactly equal to 1""", a quantity easily measured by ordi-

nary means, it is not difficult with ordinary care to determine the

pole of the sun's path so closely that no observed point lies more

than a degree from the path. The pole is then fixed within one

degree unless the length of the path is very short ; usually if the

path is more than 90° in length the pole may be placed within less

than a degree of its true place and the latitude measured with an

error of less than one degree.

HOUR-ANGLE OF THE SUN

Open the dividers as before (see p. 14) so as to draw a great circle.

Place the steel point upon the place of the sun, S, on its diurnal

circle at the time of the last observation in the afternoon (Fig. 19),

and with the pencil point strike a small arc cutting the equator at Q.
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Place the steel point where this arc cuts the equatot, and draw a

great circle which will pass through the sun's place and the pole

;

notice that it also cuts the equator at right angles. Such a circle is

called an hour-circle. It is the intersection of the surface of the

sphere with a plane that passes through the poles and the place of

the sun. The number of degrees in the arc of the equator, included

between the meridian and the hour-circle which passes through the

sun, is called the hour-angle of the sun. By the ordinary convention

of solid geometry it measures the wedge angle between the plane of

the hour-circle and the plane of the meridian. If a book be placed

with its back in the line from the pole to the center of the sphere,

and with its title-page to the west, and the western cover opened

till it is in the plane of the hour-circle, while the title-page is in

the plane of the meridian, the wedge angle between the title-page

and the cover will be the hour-angle and will be measured by the

arc of the equator indicated above. It is reckoned as increasing

from the meridian towards the west in the direction in which the

cover is opened. If the hour-circle of the first morning observa-

tion is determined in the same way, the hour-angle measured in

the opposite direction from the meridian is sometimes called the

hour-angle east of the meridian ; but more commonly by astronomers

this value is subtracted from 360°, and the angle thus obtained is

called the hour-angle, this being more convenient because the hour-

angle of the sun thus measured constantly increases with the time

as the sun pursues its course ; being 0° at noon, 180° at midnight,

360° at the next noon, etc.

UNIFORM INCREASE OF HOUIUANGLE

Let us now examine more carefully the truth of the surmise pre-

viously made, that the arc of the sun's path between two successive

observations is proportional to the interval of time between the

observations. Draw the hour-circles of the sun at each point of

observation (Fig. 20) ; measure the arc on the equator between the

first and the last hour-circles ; divide by the number of minutes

between the two times. This will give the average increase of

hour-angle per minute. Multiply this increase by the difference in
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minutes of each of the observed times from the time of the first

observation, and compare with the progressive increase of the hour-

angle as measured off on the equator by means of the graduated
quadrant. They will be found to be nearly the same in each case.

It is thus shown that the hour-angle of the sun increases uniformly
with the time. The rate is nearly a quarter of a degree per minute,

since 360° are described in 24 hours. Notice that when the hour-

angle is zero, the actual time by the watch is not very far from 12

o'clock (in extreme cases it may be 45 minutes, if the clock is keep-

ing standard time), and that if the hour-angle in degrees (west of

the meridian) is divided by 16, the number of hours differs from the

Fig. 20

watch time just as much as the time of meridian passage differs

from 12 hours. In fact, the hour-angle of the sun measures what

is called apparent solar time, i.e., when H.A. = 15°, it is 1 o'clock;

H.A. = 75°, it is 5 o'clock ; H.A. = 150°, 10 o'clock, etc. ; those angles

east of the meridian lying between 180° and 360°, i.e., between 12''

and' 24'', so that 12 hours must be subtracted to give the correct hours

by the ordinary clock, which divides the day into two periods of 24

hours each ; for instance, if H.A. = 270°, it is 18'' past noon or 6 a.m.

of the next day. Astronomical clocks usually show the hours con-

tinuously from to 24, thus avoiding the necessity of using a.m.

and P.M. to discriminate the period from neon to midnight and from

midnight to noon.
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DECLINATIOlSr OF THE SUN

The distance of the sun's path from the celestial equator, meas-

ured along the arc of an hour-circle, is called its declination, and

will be found appreciably the same at all points. It requires more

delicate observation than ours to find that it changes during the

few hours covered by our observation. If, however, the observa-

tion be repeated after an interval, say, of two weeks at any time

except for a month before or after the 20th of June or December,

it will be found that although the sun at the second observation

describes a circle, this circle is not in the same position with regard

to the equator— that its declination has changed (between March
13 and 27, for instance, by about 5°.5). The inference to be drawn

is that even during the period of our observation the sun's path is

not exactly parallel to the equator, although our observations are

not delicate enough to show that fact.

It is true in general, as in this case, that the first rude meas-

urements applied to the heavenly bodies give results which when
tested by those covering a longer time, or made with more delicate

instruments, are found to require correction.



CHAPTER II

THE MOON'S PATH AMONG THE STARS

Next to the diurnal motion of the sun the most conspicuous

phenomenon is the similar motion of the stars and the moon ; this

will form the subject of a future chapter.

The study of the moon, however, discloses a new and interesting

motion of that body. It partakes, indeed of the daily motion of

the heavenly bodies from east to west, but it moves less rapidly,

requiring nearly 25 hours to complete its circuit instead of 24, as

do the sun and stars, and returning to the meridian therefore

about an hour later on each successive night.

In consequence of this motion it continually changes its place

with reference to the stars, moving toward the east among them
so rapidly that the observation of a few hours is sufficient to show
the fact. At the same time its declination changes like that of the

sun, but much more rapidly.

We should begin early to study this motion, and it will be found

interesting to continue it at least for some months at the same time

that other observations are in progress — a very few minutes each

evening will give in the course of time valuable results.

POSITION BY ALIGNMENT WITH STARS

The first method to be used consists in noting the moon's place

with reference to neighboring stars at different times. Some sort

of star map is necessary upon which the places of the moon may be

laid down so that its path among the stars may be studied. As

the configurations that offer themselves at different times are of

great variety, it will be well to give a few examples of actual

observations of the moon's place by this method.

Dec. 12, 1899, at 12'' 0"° p.m., the moon was seen to be near

three unknown stars, making with them the following configuration,

21
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Dix.1!^

^ aymmelriccifigure

Fig. 21

wliich was noted on a slip of paper as shown in Fig. 21. The
relative size of the stars is indicated by the size of the dots. (The

original papers on which the observations are made should be care-

fully preserved ; indeed, this should always be the

practice in all observations.)

At the same time, for purposes of identification,

it was noted that the group of stars formed, with

Capella and the brightest star in Orion, both of

which were known to the observer, a nearly equi-

lateral triangle. It was also noted that the moon
was about 6° from the farthest star, this being

estimated by comparison with the known distance between the

"pointers" in the "Dipper" (about 6°). With these data it was

easily found by the map that these stars were the brightest stars

in Aries, and the moon was plotted in its proper place on the map
(page 24).

December 13, at S"" So" p.m., the moon was ^ (half its diameter)

below (south of) a line drawn from Aldebaran (identified by its

position with reference to Capella and Orion and by the letter V of

stars in which it lies, the Hyades) to the faintest of the three

reference stars of December 12. It was also about |-° west of a

line between two unknown stars identified later as Algol (equi-

distant from Capella and Aldebaran) and y Ceti (at first supposed

on reference to the map to be a Ceti,

but afterward correctly identified by

comparing the map with the heavens).

The original observation is given

below (Fig. 22) of about one-half the

size of the drawing, all except the

underscored names being in pencil.

The underscored names are in ink and

made after the stars were identified.

This is a useful practice when addi-

tions are made to an original, so that subsequent work may not be

given the appearance of notes made at the time of observation. It

is well to give on the sketch map several stars in the neighborhood

of those used for alignment, to facilitate identification.

Dec. J3^S''JS"' Oigol

-'7

Cetus 7

Fig. 22
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The alignment was tested by holding a straight stick at arm's
length parallel to the line joining the stars.

December 14, 6* SO" p.m. Moon on a line from Algol through
the Pleiades (known) about 2^° (6 diameters of moon) beyond the
latter, which were very faint in ^^^^ , -f^.a. mc «"<«:;
the strong moonlight. No figure. \ \

"
"'"

December 15, S'' lO" p.m. Moon \ ;

in a line between Capella and Alde-

baran. Line from Pleiades to moon „^ .

bisects line from Aldebaran to p \ \

Tauri (identified by relation to
....\.X

Aldebaran and Capella).
Qh 25'n P.M. Moon in line from 'i ,

/3 Aurigae to Aldebaran (Fig. 23).
«wc»ar«n •

.

(Note. — Henceforth details of identifioation are omitted.)

December 16, 7^ 40™ p.m. Moon almost totally eclipsed 2^° east

of line from j3 Aurigae to y Orionis ; same distance from (3 Tauri as

^ Tauri (revised estimate about ^° nearer ft Tauri
CvW than is ^ Tauri) (Fig. 24).

December 18, 10'' 30"" p.m. Observation

snatched between clouds. Moon's western edge

tangent to line from a Geminorum to Procyon

and about 1° north of center of that line.

In the sketch maps above no great accuracy is

attempted in placing the stars, but in the final

plotting on the map the directions of the notes

are carefully followed. The plotting should be

done as soon as possible after the observation

is made, for even a hasty comparison with the

map will often show that stars have been mis-

identified or that there is some obvious error m
Fig. 24 the notes, which may be rectified at once if there

is an opportunity to repeat the observation. Such

a case occurs in the observations of December 13 recorded above,

where y Ceti was mistaken for a.
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PLOTTING POSITIONS OF THE MOON ON A STAR MAP

Figure 25 shows the positions of the mooii plotted from the fore-

going observations, together with tlie lines of construction from

which they were determined.

A drawing should be made of the shape of the illuminated portion

of the moon at each obseryation, and the direction among the stars
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THE MOON'S PLACE FIXED BY ITS DISTANCE FROM
NEIGHBORING STARS

One month's observation by this method will show that the moon's

path is at all points near to the curved line drawn on the map,

which is called the ecliptic and which is explained on page 70.

To establish more accurately its relations to this line it will be

advisable in the later months to adopt a more accurate means of

observation, although when the moon is very near a bright star, its

position may be quite accurately fixed by the means that we have

indicated ; and if it chances to pass in front of a bright star and

produce an occultation, the moon's position is very accurately fixed

indeed, as accurately as by any method. But such opportunities

are rare, and for continuous accurate observation we should have a

means of measuring the distance of the moon from stars that are

at a considerable distance from it. An instrument sufSciently accu-

rate for our purpose is the cross-staff described below. It should be

mentioned that, on ac-

count of the distortion

of the map, the place of

the moon is usually more

accurately given by dis-

tances from the com-

parison stars than by

alignment. The sextant

may be used instead of

the cross-staff, but is

less convenient and also

more accurate than is

necessary.

The Cross-staff The

cross-staff (Fig. 26) con-

sists of a straight graduated rod upon which slides a " transversal

"

or « cross " perpendicular to the rod ; one end of the staff is placed

at the eye and the « cross " is moved to such a place that it just

fills the angle from one object to another ; its length is then the

chord of an arc equal to the angle between the objects as seen from

Fig. 2G
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that end of the staff at which the eye is placed. The figure, which

is taken from an old book on navigation, illustrates the use of this

instrument for measuring the sun's altitude above the sea horizon

;

the rod in the position shown indicates that the sun's altitude is

about 40°.

Obviously a given position of the cross corresponds to a definite

angle at the end of the rod, and the rod may be graduated to give

this angle directly by inspection, or a table may be constructed by

which the angle corresponding to any division of the rod may be

found ; such a table is given on page 27. For our purpose an instru-

ment of convenient dimensions is made by using a cross 20 em. in

length, sliding on a rod divided into millimeters (Fig. 27) ; this may
be used for measiiring angles up to 30°, which is enough for our

A

jC:
'i!i^^^^^^^^Si^^\^^Z^i^.

t:;,
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Tl.t.l.l.f.l.t.ntl.l.l.l.l.l.l.l.l'

M'MI'I'I'NI'I I

.i.'ft.i.i.i.i.i.H.i.l

Fig. 27

purpose. The smallest angle that can be measured is about 12°,

which corresponds to a chord of J of the radius ; but by making a

part of the cross only 10 cm. long, as shown in the figure, we may
measure angles from 6° upwards, and for smaller angles may use

the thickness of the cross, which is 5 cm., and thus measure angles

as small as 3° ; the longer cross will not give good results above

30°, as a slight variation of the eye from the exact end of the rod

makes a perceptible difference in the value of the angles greater

than 30°.

Measures with the Cross-staff. — As an example of the use of the

cross-staff, the following observations are given: They were made
with a staff about 3 feet in length, graduated by marking the point

for each degree at the proper distance in millimeters from the eye

end of the staff, as given by Table II on page 27. After the points

were marked a straight line was drawn through each entirely across

the rod, using the cross itself as a ruler
;
graduations were 'thus

made on one side for use with the 20 cm. cross, on the other for the
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Table I -
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10 cm. cross, and on one edge for the thickness of the cross. By-

means of these graduations the angle subtended by the cross in any

position is read directly from the scale, quarters or thirds of a

degree being estimated and recorded in minutes of arc.

The observations are

:

1900. January 2. S^ 15™.

Moon to c Pegasi, 35° 45'

" ' Altair, 26 30

" " Fomalhaut, 41 40

January 3. 6^ 0™.

Moon to e Pegasi, 23° 30'

" Altair, 29 20
" " /3 Aquarii, 8 20

January 4. 5'' 20™.

Moon to e Pegasi, 17° 40'

" " |8 Aquarii, 8 30
" " S Capricomi, 9 45

January 6. 5^ 50™.

Moon to 7 Pegasi, 12° 0'

" a Pegasi, 16 40
" " e Pegasi, 33 30

January 7. 5^ 45™.

Moon to 7 Pegasi, 9° 40'

" " /3 Arietis, 19 45
" " u. Andromedse, 21 15

" " /3 Ceti, 27 30

January 8. 6^ 0™.

Moon to a Arietis, 11° 0'

" 7 Pegasi, 21 30

January 9. lO^^ 0™.

Moon to a Arietis, 9° 45'

" Alcyone, 16

" " a Ceti, 15 30

To represent these observations on the star map, open the com-
passes until the distance of the pencil point from the steel point is

equal to the measured distance— making use for this purpose of

the scale of degrees in the margin, and then with the steel point
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carefully centered on the comparison star, strike a short arc with

the pencil point near the estimated position of the moon ; the inter-

section of any two of these arcs fixes the position of the moon. If

the different stars give different points, those nearest the moon may

Pig. 28

be assumed to give results nearer the truth. Pig. 28 shows the

positions of the moon January 6 to January 9 as plotted from the

above measures.

Length of the Month.— If it happens that one of the positions ob-

served in the second month falls between the places obtained on two

successive days of the first month, or vice versa, a determination of

the moon's sidereal period may be made by interpolation. Thus, on

plotting the observation of December 12 (p. 22), which places the

moon between the two observations on January 8'' &^ 0" and Janu-

ary 9'' lO"" 0", its distance from the former is 6°.0 and from the latter

10°.0, while the interval is 28'' ; the moon's place on December 12 at

12'' 0"" is therefore the same as on January 8 at 6'' -f— X 28'', or Jan-

uary 8'^ 16''.5, that is, January 9 at 4'' 30"" a.m., and the interval

between these two times' is 27'' 4'' 30"", which is the time required for

the moon to make a complete circuit among the stars or the length
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of the sidereal month. This is a fairly close approximation ; the

observation of December 12 having been made under favorable

circumstances, the configuration being well defined and the stars

near, so that the position on that date by alignment is nearly as

accurate as those determined by the measures 'on January 8 and 9.

After three months the moon comes nearly to the same position at

about the same time in the evening, so that it is convenient to deter-

mine its period without interpolation by observing the time when the

moon comes into the same star line as at the previous observation

;

moreover, the interval being three months, an error of an hour in

the observed interval causes an error of only 20" in the length of

the month.

THE MOON'S NODE

When a sufficiently large number of observations have been plot-

ted to give a general idea of the moon's path among the stars, a

smooth curve is to be drawn as nearly as possible through all the

points and this curve should be compared with the ecliptic, as shown

on the map. Its greatest distance from the ecliptic and the place

where it crosses the ecliptic— the position of the node— should be

estimated with all possible precision. For this purpose, only the

more accurate positions obtained by the cross-staff should be used.

After a few observations of alignment are made, the student will

desire to use the more accurate method at once, but it is better to

have at least one month's observation by the first method (even if

the cross-staff is also used) for comparison with later observations by

alignment for the purpose of determining the length of the month,

as suggested above, without any instrumental aid whatever.

The records of the positions of the node should be preserved by

the teacher for comparison from year to year to show the motion

of this point along the ecliptic. The node, as determined by the

observations above given, was nearly at the point where the ecliptic

crosses the line from y Orionis to Capella. Observations made in

November, 1897, by the method of Chapter IV, gave its place on the

ecliptic at a point where the latter intersects a line drawn through

Castor and Pollux, thus indicating a motion of about 40° in the

interval.
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Observations made with the cross-stafE are sufficiently accurate

to show that the motion of the moon is not uniform, but as the dis-

tortion of the map complicates the treatment of this subject, we
shall defer its consideration until the method of Chapter V has

been introduced.

It will be well, however, as soon as measures with the cross-staff

are begun, to devote a few minutes each evening to measures of the

moon's diameter with an instrument measuring to 10", such as a good

sextant ; or, better, a telescope provided with a micrometer, in order

to show the variations of the moon's apparent size at different parts

of its orbit. The relative distances of the moon from the earth as

inferred from these measures should be compared with the varia-

tions of her angular motion as read off from the chart; although

on aecoimt of the distortion referred to above, it wiU not be possible

to show more than the fact that when the moon is nearest, her

angular motion about the earth is greatest, and vice versa.

The sextant or micrometer may henceforward be used also for

observations of the sun's diameter, which should be measured as

often as once a week for a considerable period.

When the moon's diameter is measured, a rough estimate of her

altitude should be made in order to make the correction for aug-

mentation in a future more accurate discussion of the measures for

determining the eccentricity of her orbit.

DETERMINING THE ERRORS OF THE CROSS-STAFF

Observations with the cross-staff are most easily made just before

the end of twilight or in full moonlight, so that the cross may be

seen dark against a dimly lighted background. When used for

measuring the distance of stars in full darkness, it is convenient

to have a light so placed behind the observer that, while invisible

to him, it shall dimly Uluminate the arms of the cross.

As the angles which are determined by the cross-staff, especially if

large, are affected by the observer's habit of placing the eye too near

to or too far from the end of the staff, it is a good plan to measure

certain known distances and thus determine a set of corrections to

be applied, if necessary, to all measures made with that instruments
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The following table gives tlie distances between certain stars always

conveniently placed for observation in the United States, together

with the results of measures made upon them with a cross-staff

held in the hands without support, and indicates fairly the accuracy

which may be obtained with this instrument. The back of the

observer was toward the window of a well-lighted room, and the

cross was plainly visible by this illumination.

Stars



CHAPTER III

THE DIURNAL MOTION OF THE STARS

As the observations of the moon require but a few minutes each

evening, observations may be made on the same nights upon the

stars. The first object is to obtain the diurnal paths of some of the

brighter stars, and as they cast no shadow we must have recovu'se

to a new method of observation to determine their positions in the

sky at hourly intervals.

A simple apparatus for this purpose is represented in Fig. 29.

A paper circle is fastened to the leveling board used in the sun

Fig. 29

observations so that the zero of its graduation lies as nearly as

possible in the meridian, and a pin with its head removed is placed

upright through the center of the circle.

A carefully squared rectangular block about 10 inches by 8 inches

by 2 inches is placed against the pin so that the angle which its

face makes with the meridian may be read off upon the horizontal

33
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circle. A second paper circle is attached to the face of the block

with the zero of its graduations parallel to the lower edge ; a light

ruler is fastened to the block by a pin through the center of its

circle ; the ruler may be pointed at any star by moving the block

about a vertical axis till its plane passes through the star, and then

moving the ruler in the vertical plane till it points at the star ; a

lantern is necessary for reading the circles and for illumination of

the block and ruler in full darkness ; it should be so shaded that

its direct light may not fall on the observer's eye. Sights attached

to the ruler make the observation slightly more accurate, but also

rather more difficult, and without them the ruler may be pointed

within half a degree, which is about as closely as the angles can be

determined by the circles.

THE ALTAZIMUTH

An inexpensive form of instrument for measuring altitude and

azimuth is shown in Fig. 30. Here the ruler provided with

sights A, B is movable about d, the center of the semicircle E.

This semicircle is movable about an axis

perpendicular to the horizontal circle F,

and its position on that circle is read

off by the pointer
ff,

which reads zero

when the plane of E is in the meridian.

The circle F is mounted on a tripod

provided with leveling screws. If the

circle is so placed that the pointer reads

zero when the sight-bar is in the mag-

netic meridian, then its reading when
the sights are pointed at any star will

give the magnetic bearing of the star.

It will, however, be more convenient to

adjust the instrument so that the pointer

reads zero when the sight-bar is in the

true meridian.

To insure the verticality of the standard a level is attached to

the sight-bar, and by the leveling screws the instrument must be

Fig. 30



THE DIURKAL MOTION OF THE STARS 35

adjusted so that the circle E may be revolved without causing the

level bubble to move. (See page 36.)

A more convenient and not very expensive instrument is the

altazimuth or universal instrument shown in Fig. 31, which contains

some additional parts by the use of which it may be converted into

an equatorial instrument.

(See page 46.) It consists

of a horizontal plate carry-

ing a pointer and revolving

on an upright axis which

passes through the center

of a horizontal circle grad-

uated continuously from 0°

to 360°. The plate carries

a frame supporting the

axis of a graduated circle;

this axis is perpendicular

to the upright axis, and the

circle is graduated from 0°

to 90° in opposite directions.

Attached to the

circle is a tele-

scope whose op-

tical axis is in

the plane of the

circle. The cir-

cle is read by

a pointer which

is fixed to the

frame carrying its axis and reads 0° when the optical axis of the

telescope is perpendicular to the upright axis. A level is attached

to the telescope so that the bubble is in the center of its tube when

the telescope is horizontal. In what follows, all these adjustments

are supposed to be properly made by the maker.

Rg. 31
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ADJUSTMENT OF THE ALTAZIMUTH

If the altazimuth is so adjusted that the upright axis is exactly

vertical, and if we know the reading of the horizontal circle when

the vertical circle lies in the meridian, we may determine the

position of a heavenly body at any time by pointing the telescope

upon it and reading the two circles. The difference between the

reading of the horizontal circle and its meridian reading is the azi-

muth, and the reading of the vertical circle is the altitude of the

body. Before proceeding to the observation of stars, it will be well

to repeat our observations on the sun, using this instrument, and

making them in such a manner that we may at the same time get a

very exact determination of the meridian reading by the method

suggested on page 14.

Place the instrument upon the table used for the sun observation

;

bring the reading of each circle to 0° ; and turn the whole instru-

ment in a horizontal plane imtil the telescope points approximately

south, using the meridian determination obtained from the shadow

observations. One leveling screw will then be nearly in the meridian

of the center of the instrument, while the two others will lie

in an east and west line. Bring the level bubble to the middle

of its tube by turning the north leveling screw ; then set the

telescope pointing east ; and '' set '' the level by turning the east

and west screws in opposite directions. Be careful to turn them

equally ; this can be done by taking one leveling screw between the

Fig. 32

finger and thumb of each hand, holding them firmly, and turning

them in opposite directions by moving the elbows to or from the

body by the same amount. Turn the telescope north, and the bubble
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should remain in place ; if it does not, adjust the north screw. The
instrument is very easily and quickly adjusted by this method.

The upright axis is vertical when the telescope can be turned about

it into any position without displacing the bubble.

Determination of the Meridian and Time of Apparent Noon.— After

completing the adjustment of the instrument, the reading of the circle

Fig. 33

when the telescope is in the meridian is determined as follows : Point

the telescope upon the sun approximately. Place a sheet of paper or

a card behind it, and turn the telescope about the vertical axis until

the shadow of the vertical circle is reduced to its smallest dimensions

and appears as a broad straight line. By moving the telescope

about the horizontal axis, bring the shadow of the tube to the form

of a circle ; in this circle will appear a blurred disk of light. Draw
the card about 10 inches back from the eyepiece, and pull out the

latter nearly
-J

of an inch from its position when focused on distant

objects and the disk of light becomes nearly sharp ; complete the

focusing of this image of the sun by moving the card to or from

the eyepiece. The distance of the card and the drawing out of the

eyepiece should be such that the sun's image shall be about
-J-

to f
of an inch in diameter. ]!^ow move the telescope until the image is

centered in the shadow of the telescope tube, note the time, and read

both circles ; this observation fixes the altitude and azimuth of the
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sun. For determining the meridian it is not necessary that the

time should be noted, but it will be convenient to use these obser-

vations for a repetition of the determination of the sun's path, deter-

mining the altitudes and azimuths by this more accurate method.

This observation should be made at least as early as 9 a.m.

Now increase the reading of the vertical circle to the next exact

number of degrees, and follow the sun by moving the telescope

about the vertical axis. After a few minutes the sun will be again

centered by this process. Note the time, and read the horizontal

circle. Increase the reading of the vertical circle again by one

degree to make another observation, and so on for half an hour.

Observations may be made at one-half degree intervals of altitude,

but those upon exact divisions will evidently be more accurate. If

circumstances admit, observations may be made, during the period

of two hours before and after noon, for the purpose of plotting the

sun's path ; but, owing to the slow change of altitude in that time,

the corresponding azimuths are not well determined, and they will

be nearly useless for placing the instrument in the meridian.

Some time in the afternoon, as the descending sun approaches the

altitude last observed in the forenoon, set the vertical circle upon the

reading corresponding to that observation, and repeat the series in

inverse order ; that is, decrease the readings of altitude by one degree

each time, and note the time and the reading of the horizontal circle

when the sun is in the axis of the telescope at each successive

altitude.

Since equal altitudes correspond to equal azimuths (see page 14),

east and west of the meridian, the difference of the horizontal read-

ings is twice the azimuth at either of the two corresponding obser-

vations (360° must be added to the western reading, if, as will

generally be the case, the 0° point lies between the two readings).

Therefore, one-half this difference added to the lesser or subtracted

from the greater reading gives the meridian reading. The same

value is more easily found by taking half the sum of the two read-

ings. In the same way one-half the interval of time between the

two observations added to the time of the first reading gives the

watch time of the sun's meridian passage, or apparent noon, as it

is called.



THE DIURNAL MOTION OF THE STARS 39

Each pair of obserTations gives the value of the meridian reading

and of the watch time of apparent noon ; their accordance will give

an idea of the accuracy of the observations.

The following observations of the sun were made March 8, 1900,

with an instrument similar to that shown in Fig. 33.
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MERIDIAN MARK

It mil be convenient to fix a meridian mark for future use. This

may be done by fixing the telescope at the meridian reading, txirning

it down to the horizontal position, and placing some object (as a

stake) at as great a distance as possible, so that it may mark the

line of the axis of the telescope when in the meridian. A mark on

a fence or building wiU serve if at a greater distance than 60 feet,

though a still greater distance is desirable. For setting the tele-

scope upon the mark, it is convenient to have two wires crossing in

the center of the field of view, but the setting may be made within

0°.l without this aid. Having established such a mark, set the

horizontal circle at 0°, and move the whole base of the instrument

until the telescope points upon the meridian mark. Level carefully

;

then set the telescope again, if the operation of leveling has caused

it to move from the meridian mark ; level again, and by repeating

this process adjust the instrument so that it is level and that the

telescope is in the meridian. Then press hard on the levehng

screws, and make dents by which the instrument can be brought

into the same position at any future time.

After the a.m. and p.m. observations recorded above, the tele-

scope was pointed upon a meridian mark established by observations

made with the shadow of a pin, and the reading of the horizontal

circle was 359°.8. The mark was then shifted about a foot toward

the west, and the telescope again pointed upon it. As the reading

pi the circle was then 360°.6, it may be assumed that the mark was

now very nearly in the meridian.

If circumstances are such that no point of reference in the meridian

is available, it will be necessary, after determining the meridian

readings by the sun, to set the telescope upon some weU-defined object

in or near the horizontal plane and read the circle. The difference

between this reading and the meridian reading will be the azimuth

of the object. Set the pointer of the horizontal circle to this value,

and set the telescope upon the reference mark by moving the whole

base as before. If the pointer of the circle is now brought to 0°, the

telescope will evidently be in the meridian ; and the position is to

be fixed by making dents with the leveling screws as before.
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CHOICE OF STAES

We are now ready to begin observations of the stars.

The most familiar group of stars in the heavens is, no doubt, that

part of the Great Bear which is variously called the Dipper, Charles's

Wain, or the Plough.

At the beginning of October, at 8 o'clock in the evening, an

observer anywhere in the United States will see the Dipper at an

altitude between 10° and 30° above the N.W. horizon. Set the

telescope upon that star which is nearest the north point of the

horizon; read both circles to determine its altitude and azimuth,

and note the time. Even if the telescope is provided with cross-

hairs, the illumination of the light of the sky will not be suffi-

cient to render them visible ; but sufficient accuracy in pointing is

obtained by placing the star at the estimated center of the field.

Observe in succession the altitude and azimuth of the other six

stars forming the Dipper, poting the time in each case.

Using the Dipper as a starting point, we will now identify and

observe a few other stars.* The total length of the Dipper is about

.
25°. Following approximately a line drawn joining the last two

stars of the handle of the Dipper, at a distance of about 30°, we
come to a bright star of a strong red color, much the brightest in

that portion of the heavens ; this is Arcturus. Observe its altitude

and azimuth, and note the time as before. Almost directly over-

head, too high to be conveniently observed at this time, is a bril-

liant white star, Vega (a Lyrse). A little east of south from Vega,

at an altitude of about 60°, is a group of three stars forming a line

about 5° in length. The central and brightest star of the three is

Altair (a Aquilee), and its position should be observed.

Diurnal Paths of the Stars. — Proceed in this way for about an

hour, observing also, if time permits, the group of five stars whose

middle is at azimuth 220° and altitude 35°. This is the constella-

tion of Cassiopeia. Another interesting asterism will be foimd—
supposing that by this time it is 9 o'clock— at azimuth 270° and

altitude 45°, consisting of four stars of about equal magnitude,

* Many of the latest text-hooks on astronomy contain small star maps which

are valuable aids in the identification of the less conspicuous groups.
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placed at the corners of a quadrilateral -whose sides are about 15°

in length, and forming what is called the Square of Pegasus.

It is convenient as an aid in identification to note in each ease the

magnitude of the star observed. As a rough standard of compari-

son, it may be remembered that the six bright stars of the Dipper

are of about the second magnitude ; that at the junction of the

handle and bowl is of the fourth. The three stars in Aquila are of

the first, third, and fourth magnitudes. Vega and Arcturus are

each larger than an average first magnitude star. The brightest

stars in the constellation Cassiopeia and in the Square of Pegasus

range from the second to the third magnitude.

The little quadrilateral of fourth magnitude stars about 15° east

of Altair and known as Delphinus, or vulgarly as Job's Coffin, may

be observed.

At the expiration of an hour, set again upon the Dipper stars and

repeat the series, going through the same list in the same order. Arc-

turus will have sunk so low in a couple of hours as to be beyond the

reach of observation, even if the place of observation affords a clear

view of the hoiizon. Vega, however, will be less difficult to observe,

and may be now added to the list. We should not omit to make

an observation of the pole star, which, as its name indicates, may
be found near the pole and can be easily found, since the azimuth

of the pole is 180°, and its altitude is equal to the latitude of the

place.

Prom the observed values of altitude and azimuth plot the suc-

cessive places on the hemisphere exactly as in the case of the sun,

and thus represent upon the hemisphere the paths of a number of

stars in various parts of the heavens. It will be found that these

paths are all circles of various dimensions, and that the circles are

all parallel to the equator, as determined from the sun observations,

that is, they have the same pole as the diurnal circles of the sun.

At this stage it is a good plan to devote some attention to the

representation of the various results as shown on the hemisphere,

by means of figures on a plane surface, that is, to make careful free-

hand drawings of the hemisphere and the circles which have now
been drawn upon it as seen from various points of view. This is

an important aid to the understanding of the diagrams by which it
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is necessary to explain the statement and solution of astronomical

problems ; with this purpose in view the drawings should be lettered

and the definitions of the various points and lines written under

them.

ROTATION OF THE SPHERE AS A WHOLE

So far the result of our observations is to show that the heavenly-

bodies appear to move as they would if they were all attached in

some way to the same spherical shell surrounding the earth, and

were carried about by a common revolution, as if the shell rotated

on a fixed axis, passing through the point of observation. The sun

may be conceived as carried by the same shell, but observations at

different dates show that its place on the shell must slowly change,

since its declination changes slightly from day to day.

If these observations on the stars are repeated ten days or one

hundred -days later, we shall find that the declinations determined

from them are the same ; that is, the declinations of the diurnal

paths of the stars do not change like that of the sun. It will appear

also that, as in the ease of the sun, equal arcs of the diurnal circle

and consequently equal hour-angles are described in equal times.

It follows from this, of course, that stars nearer the pole will appear

to move more slowly, since they describe paths which are shorter

when measured in degrees of a great circle, as may be shown by

measuring the diurnal circles on the hemisphere by a flexible milli-

meter scale, 1 mm. being equal to 1° of a great circle on our

hemisphere.

If the field of view of our telescope is 6°, a star on the equinoc-

tial will be carried across its center by the diurnal motion in 20

minutes, while a star at a declination of 60° will remain in the field

for twice that time, since its diurnal circle is only half as large as

the equinoctial and an angular motion of 10° of its diurnal circle is

only 6° of great circle. Since the declinations of the stars do not

change, it is unnecessary to make our observations of the stars on

the same night ; or, rather, observations made on different nights

may be plotted as if made on the same night. We may thus obtain

extensions of the diurnal circles by working early on one evening

and at later hours of the night on following occasions.
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POSITIONS FIXED BY HOUR-ANGLE AND DECLINATION;

THE EQUATORIAL

It is evident tliat we have, in the hour-angles and declinations

of the stars, another system of coordinates on the celestial sphere

by means of which their position may be fixed. The altitude and

azimuth refer the position of the star to the meridian and to the

horizon ; while the hour-angle and declination refer its position to

the meridian and the equator. We have hitherto found it more

convenient to deal with the first set of coordinates, but it is often

desirable to determine the hour-angle and declination of a body by

direct observation, and this may be done by means of an instrument

similar to the altazimuth but with the upright axis pointed to the

pole of the heavens, so that the horizontal circle lies in the plane of

the equator, ^^^ith this instrument the angles read off on the circle

which is directly attached to the telescope measure distances along

the hour-circle, perpendicular to the equator, i.e., declinations, while

an angle read off on the other circle measures the angle between the

meridian and the hour-circle of the star at which the telescope points,

and is therefore the star's hour-angle. The two circles are there-

fore appropriately called the declination circle and the hour-circle

of the instrument. As these terms are used with another meaning

as applied to circles on the celestial sphere, it would seem that there

might be confusion from their use in this sense, but in practice it

is never doubtful whether " circle " means the graduated circle of

an instrument or a geometrical circle on the surface of the sphere.

It is here supposed that the instrument has been so adjusted

that both circles read 0° when the telescope is in the plane of the

meridian and points at the equator. An instrument so mounted is

called an equatorial instrument. Our altazimuth is adapted to this

purpose by constructing the base so that it may be revolved about a

horizontal axis perpendicular to the plane in which the altitude

circle lies when the azimuth circle reads 0°. If, then, it has been

placed in the meridian by the observation of equal altitudes as

before described, it may be inclined about this latter axis through
an angle equal to the complement of the latitude, and thus brought
into the proper position for observing declination and hour-angle
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directly. An instrument so constructed is called a "universal"
equatorial. To adjust the universal equatorial so that the axis
points to the pole, adjust it as an altazimuth with both circles

reading 0° and level it with the telescope in the meridian pointing
south. Depress the telescope till the reading of the vertical circle

equals the co-latitude. Tip the whole instrument so as to incline

the vertical axis to-

ward the north' till

the bubble plays and

the telescope is hori-

zontal ; to do this the

vertical axis must

have been tipped

back through an
angle equal to the co-

latitude, and it will

be in proper adjust-

ment directed toward

a point in the merid-

ian whose altitude

is equal to the lati-

tude. (Fig. 34 shows

the instrument
adjusted for latitude

45°.)

A notch should be cut in the iron arc at the bottom of the coun-

terpoise, into which the spring-catch may slip when the adjustment

is correct, so that the instrument may be quickly changed from one

position to the other. If the notch is not quite correctly placed,

the final adjustment may be made by a slight motion of the north

leveling screw to bring the level exactly into the horizontal position,

the vertical circle having been set to the co-latitude for this purpose.

The proper adjustment of the altazimuth is simpler, since it

depends only on the use of the level, while to place an equatorial

instrument in position we must know the latitude as well. On com-

paring the two systems of coordinates, it is clear that, while the

altitude and azimuth both change continuously, but not uniformly

Fig. 34
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with tlie time, the hour-angle changes uniformly with the time,

and the. declination remains the same. One advantage of the

latter system of coordinates is that in repeating our observations

on the same star after the lapse of an hour, we need only set

the declination circle to the previously observed declination, and

set the hour-circle at a reading obtained by adding to the former

setting the elapsed time in hours reduced to degrees by multiply-

ing by 15; we shall then pick up the star without difficulty. This

is an important aid in identifying stars, which has no counterpart

in the use of the altazimuth, and we shall henceforth use this

method of observation in preference to the other.



CHAPTEE IV

THE COMPLETE SPHERE OF THE HEAVENS

The study of the motions of the sun, moon, and stars has thus

far led to the conclusion that their courses above the plane of the

horizon can be perfectly represented by assuming the daily rotation

from east to west of a sphere to which they are attached, or a rota-

tion of the earth itself from west to east about an axis lying in the

meridian and inclined to the horizon at an angle equal to the latitude

of the place of observation, while the sun moves slowly to and from

the equator, and the moon, like the sun, changes its declination con-

tinually, and has also a motion toward the east on the sphere at a

rate of about 13° in each 24 hours. The combination of the two

motions of the moon causes it to describe a path which will be more

fully discussed later. We shall now begin to observe the sun, to

see if its motion among the, stars resembles that of the moon in

having an east and west component in addition to its motion in

declination.

The motion of the moon can be directly referred to the stars, since

both are visible at the same time, although the illumination of the

dust of our atmosphere, by strong moonlight, cuts us off from

the use of the smaller stars, which cannot be seen except when
contrasted with a perfectly dark background.

The illumination produced by the sun, however, is so strong that

it completely blots out even the brightest stars, so that we cannot

apply either of the methods that we have employed in observing

the moon.

We are only able to see the stars, of course, when they are above

the plane of the horizon, but it is natural to suppose that they con-

tinue the same course below the horizon from their points of setting

to those of their rising. This inference is confirmed by the fact that

some of the bright stars which set within a few degrees of the north

point of the horizon, and which we infer complete their course below

47



48 LABOKATOET ASTRONOMY

the horizon, may be seen actually to do so by an observer at a point

on the earth some degrees farther north, from which they may be

observed throughout the whole of their courses. In the case of the

sun, the following facts lead to the same conclusion. Immediately

after sunset a twilight glow is seen in the west whose intensity is

greatest at the point where the sun has just set. This glow appears to

pass along the horizon towards the north, and its point of greatest

intensity is observed to be directly over the position which the sun

would occupy in the continuation of its path below the horizon, on

the assumption that it continues to move uniformly in that path.

In high latitudes this change of position in the twilight arch can be

followed completely around from the point of sunset to the point of

sunrise, the highest point being due north at midnight. It is impos-

sible not to believe that the sun is actually there, though concealed

from our sight by the intervening earth. (Of course, too, it is now
generally known that in very high latitudes the sun at midsummer

is visible throughout its diurnal course.) As the sun sinks farther,

the light of the sky decreases, the brighter stars begin to appear,

and it is clearly impossible to resist the conclusion that they have

been in position during the daylight, but simply blotted out by the

overwhelming light of the sun.

OBSERVATIONS WITH THE EQUATORIAL

When we have fixed the idea that the heavenly sphere revolves

as a whole, carrying with it in a general sense all the bodies that we
observe, the next step is to devise some means of locating the dif-

ferent bodies in their proper relative positions on the sphere. For

this purpose the equatorial instrument furnishes us with an admi-

rable means of observation. The relative position of two stars is

completely fixed when we know the position of their parallels of

declination and their hour-circles, since the place of each star is

at the intersection of these two circles.

Since an observation with the equatorial gives directly the decli-

nation and hour-angle of a star, the method of fixing the relative

position of two stars, A and B, is as follows :

Point the telescope at A, and read the circles ; then set on B, and
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read the circles ; then again on A, and read the circles, taking care

that the interval between the first and second observations shall be

as nearly as possible equal to the interval between the second and
third. Obviously the mean of the two readings of the hour-circle

at the pointings upon A gives the hour-angle of A at the time when
B was observed, since the star's hour-angle changes uniformly.

The difference between this mean and the reading of the hour-

circle when the pointing was made upon B is, therefore, the dif-

ference between the hour-angles of the stars at the time of that

observation ; and this fixes the relative position of their hour-circles,

since this difference is the arc of the equator included between

them ; their declinations are given by the readings of the declina-

tion circles, and thus the relative position of the two stars is

completely known.

As an illustration of this method, we may take the following

example

:

With the telescope pointed at A, the readings of the hour-circle

and declination circle were 68°.2 and 16°.l, respectively. The

telescope was then pointed at B, and the circles read 85°.9, 28°.l,

and finally upon A, the readings being 69°.l, 15°.l ; the intervals

were nearly the same, as will usually be the case, unless there is

some difficulty in finding the second star. Of course the first star

can be re-found by the readings at the first observation; indeed,

if the intervals are plainly unequal, a repetition of the observation

may always be made at equal intervals by setting the circles for

each star so that no time is lost in finding.

From the above observations we infer that when the hour-angle

of B was 86°.9, that of A was 68°.65
; and, therefore, that the hour-

circles of the two stars cut the equator at points 17°.2o apart;

the hour-circle of B being to the west of that of A, so that B comes

to the meridian earlier, or "precedes" A.

It may be noted that the observations apparently occupied a little

less than 4 minutes, since in the whole interval the hour-angle of A
changed by 0°.9.
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USE OF A CLOCK WITH THE EQUATORIAL

If the intervals between the observations are not exactly equal,

it will still be easy to fix the hour-angle of A at the time of the

observation on B if the ratio of the intervals is known; if, for

instance, the first observation of A gives an hour-angle of 25°.3, and

the later observation an hour-angle of 26°.3, while the intervals

are 1™ between the first and second observations, and 3™ between

the second and third, the hour-angle of A at the second observar

tion was obviously 25°.3 + 0°.25. We may thus obtain by " inter-

polation " the hour-angle of A at any known fraction of the interval.

Plainly it is an advantage to note the time of each observation for

this purpose, as in the following observations, which were made

Feb. 5, 1900, for the purpose of determining the relative positions

of the stars forming the Square of Pegasus.

Stak
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If the instrument was correctly adjusted, the declination of the
four stars was as follows : y Pegasi + 16°.14, a Pegasi 15°.25,

P Pegasi 28°.l, u. Andromedae 29°.05, each being determined as the

mean of all the observations made upon the star.

The first advantage of the recorded times is to show that the

reading of the hour-circle in 6 was an error, probably for 68°.2, as

we see by comparison with the other values of the hour-angle of

y Pegasi, which increase uniformly about 1° in each 4 minutes. It

will be better, however, to reject the observation entirely, as it is

not necessary to use it- for the first set of observations 1 to 6, which

we will now discuss.

By interpolation between 1 and 6 we find that the hour-angle of

y Pegasi at 1^ 15"" 0»*was f of 1°.3 greater than 66°.3, or 66°.69

;

at 1^ 16" 15^ it was \ of 1°.3 greater than 66°.3, or 66°.95 ; and at

7" 17-" 10» it was ^% of 1°.3 less than 67°.6, or 67°.21. As the

hour-angles of the other stars were observed at these times, we
can at once find the differences of their hour-angles from that of

y Pegasi, which are as follows : u. Pegasi, 17°.01
; /3 Pegasi, 17°.15

;

u, Andromedae, 1°.09. All the hour-angles are greater than those of

y Pegasi, so that all the stars precede y Pegasi. By using all the

observations we may presumably obtain more accurate results, and

it will be well, as in all cases when a considerable number of

observations must be dealt with, to arrange the reductions in a

more systematic manner.

In the table on the following page the difference of hour-angle is

obtained by subtracting the observed hour-angle in each case from

the hour-angle of y Pegasi, so that its value is negative, if, as in

the results given above, the stars precede y Pegasi, and positive

if -they follow it. An observation of Venus, made on the same

occasion, is added to the list, and an additional observation of

a Pegasi is included ; the erroneous observation of y Pegasi at

7'' 21"" 30" is excluded.

The values of the hour-angle of y Pegasi at the successive times,

as given in column 6, are computed from the following considera-

tions, the proof of which is left to the student. If a quantity

changes uniformly, and its values at several different times are

known, the mean of these values is the same as the value which
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observations are 15°.15, 15°.20, 28°.10, 29°.06, so that the latter

require corrections of - 0°.52, - 0°.53, - 0°.55, and - 0°.62, respec-

tively. This is due to a faulty adjustment of the instrument, but

the eiTor from this cause evidently affects all the observations by

nearly the same amount, 0°.63, so that the relative positions are

given quite accurately ; our observations placing the whole constel-

lation about ^° too far north.

Since Venus is in the ijear

neighborhood of y Pegasi, we
may assume that the observa-

tions of that planet are subject

to the same corrections, that

she preceded y Pegasi by 9°.64,

and that her true declination

was - 4°.0 - 0°.63, or - 4°.53.

The correction is applied alge-

braically with the same sign as

to the other stars, since it must

be so applied as to make the

true place farther south than

the observed place.

The places of the Square of Pegasus and the planet Venus, as

seen in the sky Peb. 5, 1900, are shown in Pig. 35.

Before plotting the stars on the hemisphere from the above

data, it must be prepared by drawing upon it in their proper posi-

tions the meridian, zenith, pole, and equator. Draw the hour-circle

of y Pegasi (see Pig. 19, p. 17) at the proper hour-angle from the

meridian, to give its position at the time of the last observation,

which may be determined by making it intersect the equator at the

proper point 69°. 6 west of the meridian, and place the star upon it

at a distance from the equator equal to the observed declination,

15°.14. The hour-angle of a Pegasi should be drawn in the same

manner to cut the equator at 86°.66 from the meridian, and the

star placed upon it at the observed declination, 15°.20. Of course

on the scale of so small a hemisphere the nearest half degree is

sufficiently accm-ate. Kemember that the configurations on the

hemisphere and on the map are semi-inverted.

*30
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CLOCK REGULATED TO SHOW THE HOUR-ANGLE OF THE
FUNDAMENTAL STAR

The method of calculating the hour-angles of y Pegasi in the last

example shows that if the reading of the watch can be relied upon,

the observations of that star need only be made at the beginning

and at the end of the period of observation, the hour-angle at any

time being determined by its uniform increase ; or even from a

single observation at the beginning of the period, since at the time

of observation of any star the hour-angle of y Pegasi can be

inferred from that at its first observation by adding the number of

degrees which it would have described in the time elapsed, obtained

by multiplying the number of hours by 15, or, what gives the same

results, dividing the minutes by 4. Moreover, if the rate of the

watch is such that it completes its 24 hours in the time in which

the stars complete their daily revolution, and if its hands are so set

as to read 12 hours when y Pegasi is on the meridian, the difference

of hour-angle at any time will be equal to the reading taken directly

from the hands of the watch reduced as above to degrees, for when

the star is on the meridian and its hour-angle therefore zero, the

watch marks 0'' O™ 0'. Four minutes later by the watch the hour-

angle of the star has increased by the diurnal revolution to 1°;

in four minutes more to 2°
; when the watch indicates 1 hour, the

star's hour-angle has increased to 16°, and so on, till 24 hoiu^s have

elapsed, when the star will again be on the meridian and the cycle

recommences.

The rate of an ordinary watch is sufficiently near to that of the

stars to allow of its use for this purpose for periods of an hour

without causing any error in our observations.

In the use of this method we may regard the observation of the

fundamental or zero star as a means of finding out whether the

clock is set to the right time : thus, in the following set of obser-

vations the first observation gives the hour-angle of y Pegasi 67°.6

at ?'> 15"" 10', but as 67°. 6 equals '^^ SO"" 24^ we may regard the

clock as 2"' 44"" 46' fast ; and by applying this correction to all the

observed times, may write down at once under the title " corrected

time " what the readings would have been if the clock had been set
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to show hours, when the star's hour-angle was 0°. Multiplying

these by 15 we have the hour-angle in degrees given in column 4.

The following observations were undertaken for determining the

configuration of the stars in Orion and its neighborhood, Feb. 6, 1900.

Stab
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tlie hemisphere, where it is semi-inverted. It will be advisable,

however, before much work has been done in this way, to introduce

a slight modification.

THE VERNAL EQUINOX— RIGHT ASCENSION

The precession of the equinoxes causes a change in the position

of the equator, which slowly changes the declinations of all the

stars. Por this reason it is found more convenient to select, instead

of y Pegasi as a zero star, the point upon the equator at which the

sun crosses it from south to north about March 21 of each year.

This point, which is called the vernal equinox, is not fixed, but

its motion, due to precession, is simpler than that of any star which

might be selected as a zero point; it precedes the hour-circle of

y Pegasi at present by about 8 minutes of time, or 2° of arc, and it

was because of this proximity that we fu-st selected that star.

Instead, therefore, of adjusting our clock so that it reads O"" 0" 0'

when y Pegasi is on the meridian, ^\e set it to that time when the

vernal equinox is in that plane ; its readings then give the hour-angle

of the vernal equinox, and the difference between the hour-angles of

that point and of the star may be directly obtained from our obser-

vations. The distance by which a star follows the vernal equinox

is called its right ascension ; more carefully defined, it is the arc

of the equator intercepted between the hour-circle of the star and

the hour-circle of the vernal equinox (which measures the wedge
angle between the planes of these circles) ; it is also the angle between

the tangents drawn to these two circles where they intersect at the

pole. Since any star which is east of the vernal equinox follows it,

the right ascensions of different stars increase toward the east, that

is, toward the left in the sky as we face south, but toward the right

on the solid hemisphere as we look down from the outside upon its

southern face.

Hereafter we shall fix the positions of the stars by their right

ascensions and declinations. We may make use of the observations

already reduced with very little additional labor. Since y Pegasi

follows the vernal equinox by 2°, we need only add that amount to

the quantities given in column 7 on page 55 to know the right
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ascension of the different stars. If we learn later that on Febru-

ary 6 the right ascension of y Pegasi -was more exactly 0'' 8"" 5'.64,

we may further correct by adding 5', or even 5'. 64, if the accuracy

of the observations warrants it. The method of determining the

exact position of the zero star with reference to the vernal equinox

is giveu in Chapter VI.

Formerly right ascensions were measured altogether in degrees,

but owing to the modem use of clocks, it has long been customary

to give them in hours ; for this reason the hour-circle of instruments

mounted as equatorials is graduated to read hours and minutes

directly. Since our universal equatorial is intended to serve also

as an altazimuth, its circles are both graduated to degrees.

SIDEREAL TIME

In the last section right ascension has been defined as the angle

between the hour-circle passing through a star and the great circle

passing through the pole and the vernal equinox. The latter circle

is called the equinoctial colure. We have also suggested the use

of a clock set to read 0'' 0" 0' at the time when the vernal equinox

is on the meridian ; so that the hour-angle of the vernal equinox at

any time will be given directly by the reading of the face of the

watch in hours, minutes, and seconds, from which the angle in

degrees is found by multiplying by 15. A clock set in this manner,

and running at such a rate that it completes 24 hours in the time

that the star completes its revolution from any given hour-angle to

the same hour-angle again, is said to keep sidereal time. We
shall find later that a clock so regulated gains about 4 minutes a

day on a clock keeping mean time, thus gaining 24 hours on an

ordinary clock in the course of a year, and agreeing evidently with

a clock keeping apparent time, as defined on page 19, at that time

when the sun is at the vernal equinox and crosses the meridian at

the same time with the latter.

Let us suppose now that the vernal equinox has passed the

meridian by one hour, then its hour-angle is l*", or 15°; and our

sidereal clock indicates exactly V" 0™ 0'. Any star which is at this

time on the meridian, that is, whose hour-angle is 0°, must therefore
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follow the Yernal equinox by 1'', or 15°, while at the same instant

the time by our sidereal clock is l"" 0™ 0'. By our definition of

right ascension, since the star follows the vernal equinox by l"", its

right ascension is 1'' ; in this case, therefore, the right ascension of

the star in hours, minutes, and seconds has the same value as the

time given by the hands of the clock. In the same way, if the

vernal equinox has passed the meridian so far that its hour-angle is

2'^ 15™, the face of the clock will show 2^ 15"" ; and any star then

upon the meridian follows the vernal equinox by 2^ 15™ The same

relation holds here ; namely, that the right ascension of the star is

equal to the time by the sidereal clock when the star is upon the

meridian. This might have been given as a definition of the term

"right ascension"; and, indeed, so closely are the two connected

in the mind of the practical astronomer that if the right ascension

of a star is given, he at once thinks of this number as representing

the time of its meridian passage.

RIGHT ASCENSION PLUS HOUR-AXGLE EQUALS
SIDEREAL TDIE

"We may here give an explanation of a general principle of very

frequent application, and of which this is simply a particular case.

Suppose the vernal equinox, represented by the symbol T (Fig. 37), to

have passed the meridian by 5^ 10™

Then a star, S, whose right ascen-

sion is 2^ 16™, since it follows the

vernal equinox by that amount,

will have passed the meridian by
2'' 55™ ; and its hour-angle will be
2h 55ra rj^tj^g

^^.^ ^£ ^j^g equator

between the meridian and the ver-

nal equinox may be considered as

made up of two parts: the right

ascension of the star, which is measured by the are eastward
from the vernal equinox to the hour-circle of the star, and the
hour-angle of the star, which extends from the meridian westward
to the hour-circle of the star. Since this is true of any star, or.

Fig. 37
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indeed, of any heavenly body, we may make the following general

statement : The right ascension of any body plus its hour-angle at

any instant will be equal to the sidereal time at that instant ; or,

as it is sometimes written : E.A. + H.A. = Sidereal Time. If the

body is a point on the meridian, its H.A. = zero ; hence the R.A.

of a star on the meridian, or briefly, E.A. of the meridian= Sidereal

Time, as we have before shown.

From this relation we may most simply determine the right

ascension of any heavenly body by observing its hour-angle with

the equatorial instrument, and at the same time noting the sidereal

time, since E.A. = Sidereal Time — H.A. It is by this method

that we shall now proceed to make a somewhat extended catalogue

of stars from which we may plot their positions upon the globe.

We will here notice some of the important uses to which this

principle may be put. If by any other means the right ascension

of a body is known, we may find its hour-angle at any given sidereal

time by the equation. Sidereal Time — E.A. = H.A. This gives us

an easy way to point upon any object whose right ascension and

declination are known, if we have a clock keeping sidereal time

;

and this is the usual way in which the astronomer finds the objects

which he wishes to observe, since they are generally so faint that

they cannot be seen by the naked eye. For example, to point the tele-

scope at the great nebula in Orion, whose riglit ascension is 5'' 28"",

and declination 6° S., we first set the declination circle to — 6°,

and if the sidereal time is 7^ 30" we set the hour-circle to 2'' 2™,

then the telescope will be pointed upon the star. If the sidereal

time is 4'' 30™, in which case the star evidently has not reached

the meridian by nearly an hour, we must add 24 hours to the sidereal

time; then the expression, H.A. = Sidereal Time — E.A. will

become H.A. = 28'' 30" — 6'^ 28", or 23'' 2", the hour-angle being

reckoned, as before stated, from 0" up to 24''. If then the hour-

circle is brought to the reading 345^° = 15° x 23/^, we shall find

the star in the field.
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THE CLOCK CORRECTION

The same principle enables us to set our clock correctly to sidereal

time by observing the hour-angle of any star whose right ascension

is known. For example, the right ascension of Sirius being &^ 40",

or 100°, and its hour-angle being observed to be 330°, or 22'', the

sidereal time is E..A. + H.A., that is, 430°, or, subtracting 360°, is

70°, corresponding to 4'^ 40" ; and a clock may be set to agree ; or,

by subtracting the time which it then indicates, we determine a

correction to be applied to its reading to give the true sidereal

time.. If, for instance, at the observation above, the clock time is

4h 4jm j^Qs^
^jjg clock correction is — 1" 10'. In this case the clock

is 1" 10' fast, the time which it indicates is greater than the true

time, and its "error" is said to be -|- 1" 10*. On the other hand,

when the clock is slow the correction to true time is positive, while

the " error " is negative.

It is customary to observe this distinction between the terms

" error " and " correction "
; the former is the amount by which the

observed value of a quantity exceeds its true value, while the correc-

tion is the quantity which must be added to the observed to obtaia the

true value. They are thus numerically equal but of opposite sign.

The error of the declination circle determined by the observations

of page 63 was -I- 0°.53, while the correction was — 0°.63.

For the constantly occurring " clock correction," we shall use the

symbol \t, the value of which is positive if the clock is slow and

negative if it is fast.

If, as is often desirable, we wish to observe a body of known right

ascension upon the meridian, we have only to observe it when the

time by the sidereal clock is equal to its right ascension.

We may of course find the right ascension of the moon by a direct

comparison with the neighboring stars, just as we have determined

the difference in right ascension of a Pegasi, from that of y Pegasi,

for the brighter stars can be easily observed at the same time as the

moon ; but no star is so bright that it can be readily observed by

our small instrument when the sun is above the horizon,* and we

have therefore no means of making a direct comparison between

* See, however, page 69.
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a star and the sun. But by means of our clock and our new method
of observation this becomes easy ; and the sun is to be added to the

list of bodies whose right ascension we are to observe regularly. It

is only necessary that we should be provided with a clock which
keeps correct sidereal time. (See page 67.)

We have already spoken of the means of setting the clock;

now a few words as to how the regularity of its rate may be deter-

mined. It is only necessary to observe the watch time at which
any star is at a given hour-angle on successive nights. If the

rate of the clock is such that the interval between the observa-

tions is greater than 24 hours, the watch is gaining ; if the amount
is less than half a minute a day, the watch may be assumed for our

purposes to be keeping correct sidereal time, its actual error at any
time being checked, as before described, by the observation of the

hour-angle of bodies of known right ascension.

LIST OF STARS

Our first care will be to observe a number of bright stars not very

far from the equator which will serve for setting the clock or deter-

mining its error, selecting them so that several shall always be above

the horizon and may at any time be used for this purpose. Several

of those already observed will be found in the list given on the

following page, which contains the approximate places of a number
of conspicuous stars.

By repeated comparisons of these stars with each other and with

y Pegasi, their right ascensions may easily be fixed within 30", and
they may then be used for determining the clock error at any time

when they are visible. The observations of each evening should be

reduced as soon as possible and maps made of the various constella-

tions similar to those of Figs. 35 and 36 ; it is, however, impossible

to represent any large portion of the sphere satisfactorily on a

plane surface, and, in order to have a proper idea of the relative

positions of the various constellations, we must plot our results on

a globe— a proceeding still more necessary when we come to study

the motion of the sun and moon among the stars by the method of

the following chapter.
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A globe 6 inches in diameter is sufficiently large for our purpose

;

it should be so mounted that it may be turned about its axis on a

firm support, and upon it should be traced 24 hour-circles 15° apart,

and small circles (parallels of declination) parallel to the equator

and 10° apart ; its sui-face should be smooth and white, and of such

a texture as to take a lead-pencil mark easily, but permit of erasure.

TIME STARS

Stak



CHAPTER V

MOTION OF THE MOON AND SUN AMONG THE STARS

FoK plotting the stars on the globe in their proper places, as given

by their right ascensions and declinations, it is convenient to have

the equator graduated into spaces of 10™ each ; this may be done

by laying the edge of a piece of paper along the equator, and mark-

ing off the points of intersection of the equator with two consecu-

tive hour-circles; laying the paper upon a flat surface, bisect the

space between the two lines with the dividers, and trisect each of

these spaces by trial, testing the equality of the spacing by the

dividers ; this may be satis-

factorily done by two or three

trials, and the short scale thus

obtained may be easily trans-

ferred to the arcs on the equator

between each two hour-circles.

It may be found convenient to

bisect each of the spaces on the

scale, thus dividing the equator

into spaces of 6™ each.

A strip of parchment or

parchment paper about 8 inches

long and -^ inch wide, of the

shape shown in Fig. 58, and

graduated to degrees, completes

the apparatus necessary for

plotting. The hole being (°^

placed over the axis of the

globe, the graduated edge of

the strip may be made to coincide with the hour-circle of any star

by causing it to intersect the equator at a point corresponding to the

star's right ascension, taking care that the edge lies in a great circle

63

Fig. 38
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of the sphere ; the graduated edge gives at once the proper declina-

tion for plotting the star upon its hour-circle, and the point may be

marked with a -well-sharpened, hard lead pencil ; the latter should

be carefully kept, and used for purposes of plotting only. With

this simple apparatus the stars may be rapidly and accurately

placed upon the globe.

An attempt should be made to represent the magnitudes of the

stars by the size of the dots which indicate their places.

THE MOON'S PATH OX THE SPHERE

The moon should be placed on the list of objects for regular

observation, the observations being made in precisely the same

manner as those of the stars, and its place should be plotted

upon the globe at each observation and marked by a number,

giving the date of the month. This method of fixing the moon's

place is much more accurate than those made use of in Chapter II,

and, as the places are plotted upon a globe, we may study to better

advantage those peculiarities of her motion which are masked by

the distortion of the map referred to in Chapter II.

The position of the node may now be fixed with such a degree of

accuracy that its regression is shown by the observations of two or

three months, if some care is taken to observe as nearly as possible at

the same altitude in the successive months, so that the corrections

for parallax may be nearly the same ; indeed, a very few months will

force upon the notice of the observer the fact that the moon's path

does not lie in one plane, just as observations a few days apart

show that the sun's diurnal path is not really a small circle lying

in one plane.

We also study the variable motion of the moon by applying

dividers between the successive plotted places and then placing

the dividers against the parchment scale to measure the distance

in degrees traversed in the plane of the orbit. The scale must
lie along an hour-circle so as to conform to the curvature of the

sphere.

The average rate being about 13° a day, the points on the orbit

should be determined as nearly as possible at which the motion is
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greater and less than this amount, and the point of most rapid

motion fixed as closely as possible ; this point is most simply fixed

by its distance in degrees from the ascending node of the moon's

orbit. Since the latter point, however, is continually changing,

it is customary to reckon the so-called "longitude in the orbit" of

the point by measuring from the vernal equinox along the ecliptic

to the node, and adding the angle measured along the orbit from

the node to the point.

The variations of the moon's angular diameter and the point of

the orbit where the diameter is greatest should be compared with

the results obtained from the investigation of the angular velocity

in the orbit, since we thus gain some knowledge of the moon's

relative distances from us at different points of its orbit, and of the

relation between its distance and its rate of motion about the earth.

The scale of the 6-inch globe is too small to do justice to the

accuracy of our observations, which are accurate to a quarter or a

tenth of a degree, and it will be interesting to plot these observations
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on a map constructed on a larger scale, and on a plan whicli

reduces the distortion to very small limits in tlie region of the

ecliptic ; such a map is shown in Fig. 39 on a reduced scale ; the

ecliptic is here taken as a straight horizontal line, as the equator

is in the star map previously used ; the latitude, or angular distance

of a point from the ecliptic measured on a great circle perpendicular

to the latter, serves as the coordinate corresponding to the declina^

tion on our former map, while right ascension is replaced by lon-

gitude, or distance along the ecliptic measured from the vernal

equinox up to 360°. The same map will serve also for plotting

the paths of the planets in our later study.

For convenience in plotting, the parallels of declination and the

hour-circles are printed in broken lines upon the map. The obser-

vations of the moon shown in the figure are those of December,

1899, already plotted on the map of Fig. 25.

THE SUN'S PLACE AMOXG THE STARS

By means of the equatorial we may also determine the place of

the sun among the stars, although the method of direct comparison

with stars we have used in the case of the moon is not applicable,

since the stars are not visible when the sun is above the horizon

;

the most obvious method which is capable of any degree of accuracy

involves the use of a clock regulated to sidereal time.

To determine the place of the sun, point upon it with the equa-

torial about two hours before sunset ; note the time, and read the

circles ; as soon as possible after sunset observe a star in the same

manner, with the instrimient as near as may be to its position at

the sun observation. It is evident that if the circumstances were

fortunately such that the telescope did not have to be moved between

the observations, the difference in right ascension of the sun and the

star would be the difference in time noted by the sidereal clock,

while the declinations of the sun and star would be the same. The
nearer the star is to the position in which the sun was observed,

the less will be the errors arising from imperfect adjustment and
orientation of the instrument; while the shorter the interval be-

tween the observations, the smaller will be the error due to the
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uacertainty in the rate of the clock. As the condition of not

moving the telescope can seldom be fulfilled, however, we must
treat the observation as follows

:

Let R.A., H.A., t, and A* be the right ascension, hour-angle,

clock time, and clock correction at the time of the star observation,

and R.A.', H.A.', t', and Ai, the corresponding quantities at the

sun observation. The equation

R.A. + H.A. = Sidereal Time =t + M
determines the value of Ai, which substituted in the equation

Sidereal Time = t' +M= R.A.' + H.A.'

determines the value of E-.A.', the sun's right ascension at the

moment of observation.

The value of A<, as determined from the first equation, will be

negative if the clock is fast, and positive if the clock is slow ; and

it must always be applied to the observed time with the proper

sign. The declination of the sun is, of course, given directly by

the reading of the declination circle.

The following example illustrates the method :

March 29, 1899, an observation of the sun with an equatorial

telescope, and a clock keeping sidereal time, gave the following

values

:

Observed time = 6" 36" 26= ; H.A. = 75°.7 = 6" 2" 48" ; S = + 4°.l.

About an hour after sunset an observation of a Ceti was made

in nearly the same position of the instrument, which gave the

following values :

Observed time= 1^ SS" 43" ; H.A. = 74°.l = 4>' 56" 24^8= + 4°.2.

This latter gives, from the known right ascension of a Ceti,

2h 57m Qs _^ 4h 56m 24» = Sidereal Time = 7" 53" 43» + M,

and hence \t = — 19' ; and, applying the same equation to the sun

observation,

Sun's E.A.-+ S^ 2"" 48« = 5'^ 36" 26' - 19' = S^ 36" 7'

;

hence the sun's right ascension at the time of the first observation

was 0'' 33" 19". This is liable to an error equal to the uncertainty of

the circle readings, which may be at least one-twentieth of a degree.
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or 12' of time, and to an error equal to the uncertainty of tlie gain

or loss of the clock during the interval of 2|- hours between the

two observations, probably five or ten seconds of time. We may

assume that the errors arising from defective adjustment of the

instrument were the same for both objects, and may be neglected,

since the position of the instrument was very nearly the same for

both observations.

DIFFERENTIAL OBSERVATIONS

The declination of u, Ceti, as read from the circles, was +4°.2,

while its known declination was + 3°. 7. The correction necessary

to reduce the circle reading to the true value is, therefore, — 0°.5,

and, applying this quantity to the reading on the sun, we have for

the true value of the sun's declination + 4°.l — 0°.5 = + 3°. 6. It is

worthy of note that the correction is about the same as that deter-

mined from the observations discussed on page 53, which were

made with the same instrument in nearly the same adjustment, but

from a different place of observation. These results indicate an

inherent defect in the instrument, which is at least in great part

neutralized by the method of observation. It is a very important

thing, e^'en with the most delicate instruments, to avail ourselves of

methods which accomplish this object, and surprisingly good work
may be done with poor instrmneuts by paying proper attention

to the details of observation for this purpose.

Methods by which an unknown body is thus compared with a

known body under circumstances as nearly alike as possible are

called "differential methods."

INDIRECT COMPARISON OF THE SUN WITH STARS

It is often possible to determine the difference of right ascension

of the sun and some well-known star by using the moon as an inter-

mediary, determining the difference of right ascension of the sun and
moon during the daytime and comparing the moon and a star as soon

as possible after sunset, the motion of the moon during the interval

being allowed for. The irregularity of the moon's motion may.
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however, introduce a greater error than that arising from uncertainty

in the rate of the clock. A better method is offered on those not

infrequent occasions when the planet Venus is at its greatest

brilliancy, when it may be easily observed in full daylight ; the

motion of Venus in the interval is much smaller and more nearly

uniform, and, therefore, more accurately determined ; and by this

method the interval between the observations connecting the sun

with Venus and Venus with the star may be reduced to a very few

minutes, or even seconds, so that the error due to the clock may be

regarded as negligible.

The followiag observations illustrate the method.

April 19.3. Prooyon

Venus .

Procyon

Venus .

Procyon

April 20.0. Sun .

Venus

Sun .

Venus

Sun

April 20.3. Procyon

Venus .

Procyon

Venus .

Prooyon

Watch Time

8h 17m 45s

8 19 33

8 21 45

8 2.S

8 24 53

1 28 45

1 31 35

1 36 10

1 38 33

1 41 21

9 31 27

9 32 30

9 .33 28

9 35

9 36

H.A.

15°. 4

56 .1

16 .4

57 .0

17 .2

358 .5

313 .2

.15

315 .0

1 .4

33 .25

72 .9

33 .9

73 .3

.34 .25

+ 5°. 5

+ 26 .1

+ 5 .55

+ 26 .05

+ 5 .3

+ 11 .6

+ 25 .35

+ 11 .6

+ 25 .3

+ 11 .6

+ 5 .45

+ 25 .0

+ 5 .4

+ 25 .9

+ 5 .4

The observations April 19.3, that is, April 19 about 7 p.m., give for

the hour-angle of Venus 56°.55 at the watch time 8'' 21" 17^ and for

that of Procyon 16°.33 at 8^ 21" 28^ hence at 8" 21" Procyon

followed Venus 40°.22.

In the same way we find that April 20.3 Procyon followed Venus

39°.3, the change of the right ascension of Venus being 0°.92 in 25.2

hours. A" simple interpolation shows that April 20.0 Procyon
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followed Venus 39°.59, and the observations at that time show that

Venus followed the sun 45°.92, so that Piocyon followed the sun

39°.59 + 45°.92 = 85°.51, and the difference of right ascension between

Procyon and the sun at noon on April 20 was, therefore, 6'' 42"" 2'.

ADVANTAGES OF THE EQUATORIAL INSTRUMENT

Observation with the equatorial we shall find especially useful

in getting exact positions of the moon, since it is available at any

time when the moon is above the horizon, and after sunset we can

always find some bright star sufB.ciently near to afford a fairly

accurate value of its place.

It is often inconvenient to observe the moon by the more accurate

method which is described in Chapter \1, that of meridian observa-

tions, which is confined to a short interval of one or two minutes

each day, and is often interfered with by clouds passing at the

critical moment, although nine-tenths of the whole day may be

suitable for observations made out of the meridian. Sloreover,

until the moon is several days old, it is too faint for observation at

its meridian passage. It is, therefore, upon the equatorial that we

shall mainly rely for the determination of the moon's motion, as

well as for many observations of the planets out of the meridian.

Although it is far more convenient to find the right ascension and

declination of the sun by the method of the following chapter, at

least a few positions should be found by observations with the

equatorial and plotted on the globe. The result will be to show

that the path of the sun is very exactly a great circle fixed on the

sphere or so nearly fixed that some years of observation with the

most refined instruments are necessary to. detect any change in its

position among the stars, although a much shorter time even would

serve to show the slow change of its intersection with the celestial

equator due to precession.

This great circle is called the ecliptic, and its position is shown on

the map whicli we have used for plotting our first moon observation.

Three months will give a sufiieient arc of this circle to enable us

to determine with some accuracy its position with respect to the

equator, its inclination to the latter, and their points of intersection

;



MOTION OF THE MOON AND SUN AMONG THE STARS Tl

if possible, observations should, however, be continued throughout

the year -which the sun requires to complete its circuit, so that the

variability of its motion may be observed, most of the work, how-

ever, being done with the meridian circle.

The sun's diameter should occasionally be measured to determine

the points at which it is nearest to and farthest from the earth.



CHAPTER VI

MERIDIAN OBSERVATIONS

Wb have now arrived at a point wliere we can see what are the

desirable conditions for making observations as accurately as possible

of the position of a heavenly body. To adjust the equatorial instru-

ment so that its axis lies in the meridian and at the proper inclina-

tion, and to keep it so adjusted, is a matter of some difficulty. In

the last chapter we have shown how, by observing an unknown body

in a certain fixed position of the instrument, and later a body whose

right ascension and declination are known in as nearly as possible

the same position of the instrument, we lessen the effect of the

instrumental errors. We made our observation of the sun shortly

before sunset, so that the interval between this observation and that

of the comparison star should be as short as possible. If, however,

the rate of the clock can be relied upon, there is no reason why the

observation should not be made when the sun is on the meridian,

the interval of time required to connect it with stars in that ease

being not necessarily more than eight or nine hovirs in the most

extreme case ; and the comparative ease with which an instrument

may be constructed so that it shall be at all observations exactly in

the meridian, and the possibility of constructing very accurate time-

pieces, has determined the use of such instruments for all the more

precise observations in astronomy, such as fix the positions of the

fundamental stars and the vernal equinox on the celestial sphere.

The equatorial instrument may be xised for this purpose by clamp-

ing it in such a position that the reading of the hour-circle is 0°, in

which case the declination axis is horizontal east and west, and

when the telescope is moved about its axis it always lies in the

plane of the meridian. If, with the instrument so adjusted, we
observe the sun at the time of its meridian passage, we may find

its declination by reading the declination circle, and its right ascen-

sion by noting the interval which elapses before the meridian transit

72
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of some known star after nightfall, free from any error involved in

reading the hour-circle. As before, a star should be chosen at

nearly the same declination, so that the interval of time may be

very nearly equal to the difference in right ascension between the

sun and the star, even if the instrument is not very exactly in the

meridian. Observation of several different stars will enable us to

determine whether the instrument actually does describe the plane

of the meridian as it is rotated about the horizontal axis (see Chapter

VIII) ; and by the observation of stars near the pole, as described

on page 81, we may determine whether the declination circle reads

exactly 0° when the telescope points to the equator, as should be

the case.

THE MERIDIAN CIRCLE

An instrument which is to be used in this manner, however, is

not usually so constructed that it can be pointed at any point in the

heavens. Thus, it is un-

necessary that it should

consist of so many moving

parts as the equatorial in-

strument, and steadiness,

strength, and ease of ma-

nipulation are very uiuch

increased by constructing

it as shown in Fig. 40,

which represents a very

small instrument built on

the plan of the meridian

circle of the fixed observ-

atory. The strong hori-

zontal axis revolves in

two Y's, which are set

in strong supports in an

east and west line. The
axis is enlarged towards

the center, and through the center passes at right angles the

telescope tube. The axis carries at one end a graduated circle

Fig. 40

;s at right
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perpendicular to the axis of rotation. If the axis of the telescope

is perpendicular to the axis of rotation, and if the latter is adjusted

horizontally east and west, the telescope may be brought into any

position of the meridian plane, but must always be directed to some

point of the latter. A pointer attached to the support marks the

zero of the vertical circle when the telescope points to the zenith,

and if the telescope be pointed to a star at the time of its meridian

passage, the angle as read off on the circle is the zenith distance of

the star ; while the time of the star's meridian passage by a clock

giving true sidereal time is its right ascension. If the latitude of

the place of observation is known, the star's declination is deter-

mined by the fact that the zenith distance plus the declination of

any body equals the latitude (see page 81). At first the latitude

may be used as determined by the sun observation of Chapter I, or

from a good map showing the place of observation, but ultimately

its value should be determined with the meridian circle itself.

LEVEL ADJUSTMENT

We will now proceed to show how to make the necessary adjust-

ments for placing the telescope so that it may move in the plane of

the meridian.

Place the instrument on its pier and bring the Y's as nearly as

possible into an east and west line. If the pier is the same that

has been used in the previous work, this may be done by bringing

the telescope into the meridian which has been determined by the

method of equal altitudes.

The axis must first be brought into a horizontal line, making use

for this purpose of the striding level (Fig. 41), which is a necessary

auxiliary of this instrument. This is a glass tube nearly but not

quite cylindrical, ground inside to such a shape that a plane passing

through its axis, CD, cuts the wall in an arc, AB, of a circle whose

center is at 0. In this tube is hermetically sealed a very mobile

liquid in sufficient quantity nearly but not quite to fill it— the

space remaining, called the "bubble," always occupying the top

of the tube. When CD is horizontal, the bubble rests in the

middle of the tube with its ends, of course, at equal distances from
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the middle; the tube is graduated so that this distance may be

measured, the numbering of the graduations usually increasing in

both directions from the center of the tube. If the radius of the

arc is 14.3 feet, a length of 3 inches of this arc will be equal to

about 1°, since the arc of 1° in any circle is about of the radius

;

^
67.3

1 inch of the arc will then be about 20', and 0.05 inch 1'. These

are about the actual values for the level used with the instrument

O
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by 1', and evidently 7 and 3 when CD is inclined 2', etc., the incli-

nation in minutes of arc being one-half the difference of the readings

^ ^
of the ends of the bubble, or -

—

-— if A and B represent the

readings of the ends of the bubble in each case. If the reading of

B is greater, the end A is depressed by one-half the difference of

the readings ; and the above expression applies to both cases if we

agree that it shall always denote the elevation of A, a negative value

of —-z— indicating depression of A.

REVERSAL OP THE LEVEL

The level tube is attached to a frame (Fig. 40) resting on two stiff

legs terminating in Y 's, which are of the same shape and size as

those in which the axis of the meridian circle rests, the axis of. the

level tube being adjusted as nearly as possible parallel to the line

joining the Y's. It is difficult to insure this condition, but if it is

not exactly fulfilled, the horizontality of the axis may still be deter-

mined by placing the level on the axis, and determining the value

^ ^—-— , and then turning it end for end, and again reading the value

;

for if the end A is high by the same amount in each case, the axis

is obviously horizontal, and the measured angle of inclination is due

to the fact that the leg of the level adjacent to A is longer than the

other leg. The practical rule is to read the west and east ends in

each position. If these readings are W-^ E^ W^ E^, —^—^—- is the
LI

elevation of the west end according to the first observation, and

—^—z—- at the second. If the leg which is west at the first

observation is too long, the first observation gives a value for the

elevation of the west end too great, and the second a value too

small hy the same amount ; and the average of the two values

^ and gives the true value of the inclination of the

axis.



MERIDIAN OBSERVATIONS 77

It is usual to -write this ^^

—

g;
(.

i + '2;
^^^ ^^ record

4
tlie observations in the following foria

:

T^i Si

Wi + W^ El + E^

Subtract the second sum from the first and divide by 4. This

gives a positive value if the west end is high, and the axis may
be made horizontal by turning the leveling screw so as to make
the level bubble move through the proper number of divisions.

The level should be again determined in the same way, and the

axis is level when

{Wi + W^)-{Ei + E,) = 0.

The following record of level observation made Feb. 26.3, 1900,

conforms to the above scheme

:

w
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COLLIMATION AD,TUSTMENT

The line of collimation of the telescope is the line drawn from

the center of the lens to the wires that cross in the center of the

field. When the telescope is " pointed " or " set " upon a star, the

image of the star falls upon the point where these wires cross, and

when the instrument is correctly adjusted the line of collimation is

perpendicular to the axis of rotation, so that the line of collimation

cuts the celestial sphere in a great circle as the telescope turns upon

its axis.

To make this adjustment, point the telescope exactly upon any

well-defined distant point,— the meridian mark will, of course, be

chosen if it has been located,— then remove the axis from its Y's

and replace it after turning it end for end ; if the telescope is still

set on the mark in the second position, the adjustment is correct;

otherwise move the wire halfway toward the mark by means of

the screws a, a (Fig. 40). Set again upon the mark by moving

the screws in the eyepiece tube ; reverse the axis again, and thus

continue until the telescope points exactly upon the mark in both

positions of the axis.

If the adjustments for level and collimation are properly made,

the intersection of the wires in the center of the field of view will

appear to describe a vertical circle, that is, a great circle through

the zenith, as the instrument is turned on its axis. The final

adjustment consists in bringing this circle to coincide with the

meridian, but for this we must have recourse to observations of

stars.

AZIMUTH ADJUSTMENT

The simplest method is to observe the time of transit by a sidereal

clock of a circumpolar star at its upper transit, and again, 12 hours

later, at its transit below the pole ; if the interval is exactly 12

hours, the adjustment is correct ; if the interval is less than 12

hours, the telescope evidently points west of the pole, and the west

end of the rotation axis must be moved toward the north. This is

done by the screws a, a (Fig. 40), the fraction of a turn being noted;
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the observation is repeated upon the following night, and by com-
paring the change which has been produced by moving the screws,
the further alteration required is readily estimated. On Feb. 26
1900, the lower transit of c Ursffi Minoris was observed at 4.'' 68""

12», and the upper transit at IC SS" 32»; the times were taken by
a sidereal clock and have been corrected for its error ; the interval

being ll'> 56" 40=, it is evident that the telescope pointed to the
east of the meridian, the arc of the star's diurnal path between
the lower and upper transits lying to the east of the meridian and
being less than 12'^ by 4"" 20" or 260".

To correct the error, the west end of the axis was moved toward
the south by turning the adjusting screws through one-quarter of

a turn.
_
On the following day the observations were repeated as

follows

:

Feb. 27.26, lower transit 4" 64-" 45" ; Feb. 27.75, upper transit

le*" 64" 28" ; the eastern arc was still too small, but the error had
been reduced to 17", and required a further correction of ^J^ of a

quarter turn of the screws, which were therefore turned through
about 6° in the same direction as before, and the instrument was
thus brought very closely into the meridian.

This method can only be used with small instruments when the

night is more than 12 hours long ; but it is the only independent

method; it requires that the rate of the clock shall be known
between the two observations, and it requires observations at in-

convenient times. A more convenient method is always used in

practice, but requires an accurate knowledge of the right ascensions

of a considerable number of stars in the neighborhood of the pole.

It has been stated that it is often inconvenient to observe the moon

when on the meridian, but with this exception all the fundamental

observations of astronomy are now made with meridian instruments

on account of the simplicity and permanence of the necessary adjust-

ments. A body observed on the meridian is also at its greatest

altitude and least affected by atmospheric disturbances, which often

interfere with the observation of bodies near the horizon.
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DETERMINATION OF DECLINATIONS WITH THE
MERIDIAN CIRCLE

The circle of the meridian instrument may be used to determine

the declination of a star in two "ways, of which that now described

is perhaps the most obvious, but also the least convenient.

If the reading of the circle is known when the telescope is pointed

at the pole, the angle through which the telescope must be moved to

point upon any star, that is, the polar distance of the star, is the

difference between this value and the circle reading when the tele-

scope is pointed at the star ; this angle is 90°—the star's declination;

if the star is on the equator, the angle is 90°; and if the star is

south of the equator, the angle is greater than 90° by an amount

equal to the declination of the star ; if we consider the declination a

negative quantity for a star south of the equator, the value 90° — 8

represents the polax distance in all cases.

To determine the reading of the "polar point" we may set the

telescope upon a circumpolar star at its "upper culmination" and

read the circle, and again, 12 hours later, set on the same star at its

" lower culmination," the mean of the two readings is the reading

of the polar point. The effect of refraction may be neglected with

our small instruments without causing an error of J^ of a degree

at any place in the United States if we restrict ourselves to stars

within 10° of the pole, or the circle readings may be corrected by

a refraction table. Immediately after making this determination it

is advisable to make a setting on the meridian mark and note the

reading ; this point may thereafter be used as a reference point from

which the reading of the polar point may be at any time determined

if the meridian mark has not in the mean time changed its position.

Better still, the observation of the polar point may be combined

with a determination of the circle reading when the telescope points

at the zenith, by one of the methods to be described later ; the

difference of the readings ia this case is obviously equal to the

co-latitude, and such an observation constitutes an " absolute deter-

mination of the latitude," that is, a determination made without

reference to observations made at any other place. When the lati-

tude has once been satisfactorily determined, the observations of
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the declinations of stars can be made to depend upon determinations

of the zenith point by means of the fact that for a body on the meridian

Declination = Latitude — Zenith Distance,

latitude and declinations being reckoned positive northward from
the plane of the equator, and zenith distance positive southward

from the zenith. The proof of this relation is left to the student

as well as the interpretation of the result when the observation is

made at the transit below the pole.

At the time of observing the transits of e UrsEe Minoris described

on page 79 the following readings of the circle were made when
the star was in the center of the field. Each of these observations

consists of two readings : one of the index A on the south end of

a horizontal bar fixed to the supports of the axis, and the other

of an index B at the other extremity of the bar, as nearly as

possible half a circumference from A. An. angle given by the

mean of two readings made in this manner is free from the " error

of eccentricity," which affects readings by a single index in case

the center of the graduated circle does not exactly coincide with

the axis about which it is turned between the two observations.

Date
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The circle was known to be adjusted so that the reading of the

zenith was very exactly zero, hence the latitude of the place of

observation was 42°.36. The exact agreement of these observations

indicates that the magnifying power of the telescope was such that

it could be set more accurately than the circle could be read, and

not that the results are reliable to a hundredth of a degree.

For convenience in recovering the zenith reading, in case the

adjustment of the circle should be disturbed, the zenith distance

of a meridian mark was measured repeatedly, the result showing

that its polar distance was 137''.47, and this was used to cheek the

polar reading in later observations upon stars when it was impossible

to get observations of the same star above and below the pole.

Another method of making absolute determinations of the latitude

with the meridian circle is to observe the zenith distance of the sun

at the solstices ; the mean of these values being the zenith distance

of the equator, which is equal to the latitude. This observation,

however, is subject to considerable uncertainty on account of the

difference in atmospheric conditions at the summer and winter

solstice, and to great inconvenience on account of the lapse of

time ; it is, however, of course, the means upon which we must

rely for the accui'ate determination of the obliquity of the ecliptic,

one of the fundamental quantities of astronomy.

For the use that we shall make of the meridian circle, it will

probably be most convenient to make a careful determination of

the polar distance of the meridian mark, and use this habitually

as a point for reference.

PROGRA]M OF WOEK WITH THE jMERIDIAN CIRCLE

Work with the meridian circle should at first consist of reobser-

vation of all the stars which have been previously observed with

the equatorial, except those which are west of the meridian after

nightfall and cannot be observed for six months. Attention should

be given to gathering a list of stars within 15° or 20° of the pole

for the purpose of quickly setting the instrument in the meridian
by the methods of page 79. The sun should be observed at least

once a week and its place plotted on the globe, and many stars
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in the neighborhood of the moon's path to form a basis for finding
the moon's place by differential observations, of course, also the
moon itself, the planets and a comet, if any of suflacient bright-

ness appears. In this way, by observing a few stars each night,

a great amount of material may be stored for future use.

Especial attention should be given to getting a good number of

observations of stars near the equator, so that fairly accurate values

of their differences of right ascension may be obtained, and at the

first opportunity the absolute right ascension of one of their num-
ber must be determined in order that thus the places of all may be

known. The results may be best recorded by making a list of

their right ascensions referred to an assumed vernal equinox. Thus,

the observations discussed on page 52 show that u Pegasi precedes

y Pegasi by 17°.03 = I'' 8"" 7», or, in other words, follows it by
22'' 51" 53' ; and if the right ascension of y Pegasi referred to the

assumed equinox is O"" 8"°, that of a Pegasi is 22'^ 59" 53». If

in the course of the year observation shows that the true right

ascension of y Pegasi is 0'' 8" 5", it is evident that the true value

for a Pegasi is 22'' 59" 58', and that the right ascension of all stars

referred to the assumed equinox by comparison with y Pegasi must

be increased by 5".

DETERMINATION OF THE EQUINOX

An opportunity for observing the absolute right ascension of the

zero star, which is often called a " determination of the equinox,"

occurs about the middle of March and September.

If the course is begun in September, it will be well to make this

determination with the help of more experienced qbservers, even

before the nature and object of the measures are understood.

The observation consists in determining the difference of right

ascension of some star from the sun at the instant when the latter

crosses the equator, for at that time it is either at the vernal or

autumnal equinox, and its right ascension is in the one case hours

and in the other 12 hours.

If a meridian observation of the sun's altitude shows that the sun

is exactly on the equator at meridian passage, and the time of transit
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is noted by a sidereal clock, and as soon as it is sufficiently dark the

transit of a star is observed, the difference of the times is the absolute

right ascension of the star if the observation is made at the vernal

equinox, or equals the right ascension of the star minus 12'' if the

observation is made at the autumnal equinox.

Inasmuch as the meridian of the observer will rarely be that

one on which the sun happens to be as it crosses the equator, we
must make observations on the day before and the day after the

equinox, thus getting the difference of right ascension of the star

from the sun at noon on both days. The declination of the sun

being also measured at these two times, a simple interpolation gives

the time at which the sun crossed the equator, and this time being

known, another simple interpolation between the differences of right

ascension at the two noons gives the difference of right ascension

of the sun and star at the time when the sun was at the equinox,

which is the star's absolute right ascension.

The first interpolation assumes that the sun's declination changes

uniformly with the time, and the second that its right ascension

changes uniformly with the time.

Observations should extend over a period of a week before and a

week after the equinox to test the truth of these assumptions.

In observing the sun, a shade of colored or smoked glass may be

placed over the eyepiece, or the eyepiece may be drawn out as in

the method of observation described on page 37, and the screen

held in such a position that the cross-wires are sharply focused

upon it. As the image of the sun enters the field it should be

adjusted by moving the telescope slightly north or south till the

horizontal wire passes through the center of the disk, and as the

latter advance^ the time should be noted when the preceding and

following limbs cross the vertical wire, as well as the time when

the vertical wire bisects the disk ; at the instant of transit the disk

should be neatly divided into four equal divisions, a very small

deviation from this condition being quite perceptible to the eye.
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THE AUTUMNAL EQUINOX OF 1899

The following table gives the details of observations taken at

the autumnal equinox of 1899 for the purpose, of determining the

equinox.

The latitude of the place of observation was 42°.5, and the declina-

tions given in the last column are calculated by subtracting the zenith

distance in each case from this quantity, as explained on page 81.

Date
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its declination was — 0°.12. Hence its declination was 0° Septem-

ber 22f J, or September 22*.714. It was at that time, as exactly as

our observations can show, at the autumnal equinox, and its right

ascension was 12'' 0" 0'.

Since -q Serpentis followed it to the meridian 6'' 18™ 20'.6, that

quantity is the difference between the right ascension of the star

and that of the sun September 22.0. Similarly the difference of

right ascension of sun and star September 23.0 was &^ 14" 35^0

;

that is, it was 3" 45'.6 less than at the previous date. Assuming

this change to be uniform, the difference of right ascension of sun

and star at the moment of the equinox on September 22*.714 was

0.714 X 3" 45'.6, or 2" 41M less than on September 22.0 ; that is,

it was G'^ 15™ 39^6, and since the right ascension of the sun Sep-

tember 22.714 was 12"^ 0™ 0", the right ascension of tj Serpentis was

18" 15™ 39».5.

The following table gives the data from which the "absolute

right ascensions " of the four stars are thus determined. In the

last column are the declinations, which are the means obtained from

several observations between September 14 and September 23.

Stab
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on September 23.0 ; and recomputing with these values, the date
of the equinox was September 22|f, or September 22''.595, and
the right ascensions of the stars IS'' 16" 6'.4, IS"" 21"" 44«.6

18" SS™ 28^6, IS'' 46'" 49'.2
; that is, the uncertainty of the equinox

is 0.12 days and of the right ascensions about 27', although the
relative right ascension is altered only by a fraction of a second
in each case. It is thus evident that the accuracy of the right

ascensions depends chiefly upon the accuracy with which the sun's

declination can be measured.

THE AUTUMNAL EQUINOX OF 1900

In order to increase the accuracy of determination of declination,

a new circle reading to minutes of arc was substituted for that

used for the observations of the equinox in 1899, and the observa-

tions were repeated at the same place in 1900. The weather con-

ditions were unfavorable, so that only the following observations

could be made.

Bate
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being equal to the star's right ascension, is the same on both nights.

This rate is so large that it cannot be neglected as in the discus-

sion of the result for 1899.

If the clock correction M (see page 60) at the time of the sun's

transit, September 22, be assumed 0' and the gaining rate 46' per

day, or 1'.916 per hour, the corrections for Vega and Altair Sep-

tember 22 were — 12'.6 and — 14.9, and for the sun and Altair

September 23 -were — 45.9 and — 61'.0. The times obtained by-

applying these corrections are said to be "corrected for rate of

the clock to the epoch September 22.0."

In this manner the times, as they would have been observed with

a clock having an exact sidereal rate, are found to be :
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Applying these corrections, their right ascensions become for

i; Serpentis IS^" 16" 7b.O

X Sagittarii 18 21 44 .9

Vega 18 33 29 .3

Altair 19 45 49 .4

Since the later observations were made with an instrument
giving more accurate values of the declination, it is probable that

their results are more nearly correct. The clock rate was neglected

in the first observations, and the effects of precession, parallax, and
refraction in both series, following out the principle that no correc-

tions will be made until observations shall show their necessity.

The effect of refraction is to delay the autumnal equinox about

an hour, and hence to decrease the right ascensions of the stars

by about 10°. At the vernal equinox, however, refraction hastens

the equinox an hour and increases the right ascensions by 10°;

its effect may be shown by observations at the two equinoxes of

the same year and eliminated by their combination. Parallax

hastens the autumnal and delays the vernal equinox by about 8™,

thus affecting right ascensions by a little more than 1», the mean

of observations at the two equinoxes being free from error from

this source. The effect of precession will be manifest in less

than ten years with an instrument like that used in the above

observations of 1900.

By comparing the equinox of September 22.714 ± 0.12, 1899, and

September 22.856 ± .09, 1900, the length of the tropical year is

found to be 365°.142, but may lie between 364.93 and 365.35 as far

as our observations can surely determine. Since refraction delays

the vernal and hastens the autumnal equinox by nearly the same

amount (about an hour) in each case, it has no effect upon the

length of the year. As the greatest error to be feared with our

improved instrument is less than 0.1 day, the length of ten or one

hundred years may be determined with less than twice that error,

in those periods the length of the year may be determined within

0.02 and .002 day, respectively.

With the best modern instrument used to the greatest advantage,

the sun's declination may be determined near the equinox within
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0".5, and hence the time of the equinox within 30" and right

ascensions within 0^08. A single tropical year may be measured

with an error of less than 1".

We have now explained the methods by which it is possible to

fix the places of the sun, moon, and stars at different times and

thus to obtain data from which their apparent motions about the

earth may be studied and theories formed from which their future

places may be predicted. More or less complete accounts of these

theories are to be found in all works on descriptive astronomy,

and the predictions derived from them are published for three

years in advance by several governments for the use of navigators

and astronomers. Such a publication is the American Ephemeris

and Nautical Almanac, of which it will be convenient to give some

account before taking up the motions of the planets.

The apparent motions of the planets are less simple than those

of the sun, moon, and stars, which at all times seem to move about

the earth as a center with approximately uniform velocities. The

planets, it is true, in the long run continually move like the sun

and moon around the heavenly sphere toward the east, but their

velocities are variable within wide limits and at certain times are

even reversed, so that they move in the opposite direction or

" retrograde " among the stars.

For this reason a longer period of observation is necessary to

determine their motions than can be given by the individual student.

We may, however, regard the nautical almanacs of past years as

predictions that have been verified, and they stand for us as an

accredited set of exceptionally accurate observations from which

we may draw material to combine with the results of our own
observations.



CHAPTER VII

THE NAUTICAL ALMANAC

The American Ephemeris and Nautical Almanac consists of two
parts,— the Nautical Almanac proper, which is published separately

and contains data especially useful in navigation, and a second part,

which contains additional tables adapted to the use of astronomers.

The Nautical Almanac will suffice for most of our purposes, but the

complete work is convenient for a few references.

The tables contain data for the sun, moon, and planets, for suc-

cessive equidistant points of Greenwich mean time, so near together

that the values at any intermediate time may be obtained by inter-

polation with a degree of accuracy greater than can be obtained by

a single observation made with the most refined instruments. The

dates are given in astronomical time, each day beginning at noon

of the corresponding civil date.

At this point a few words are necessary in explanation of the term

" mean time."

We have already defined apparent solar time as the hour-angle of

the sun, and sidereal time as the hour-angle of the vernal equinox.

Owing to the fact that the sun moves at a varying angular rate and

in a path inclined to the equinoctial, the hour-angle of the sun does

not increase uniformly, and the hours of apparent time are, there-

fore, of unequal length.

We have not yet obtained material for a complete discussion of

the relation between apparent and mean solar time, and for this we

must refer to the text-books of descriptive astronomy. It will

be convenient to explain one simple statement of this relation which

is not always explicitly given.

The time required by the sun to complete its circuit of the heavens,

from one passage through the vernal equinox to another, is 366.2422

days. As it describes 360° of longitude in that time, its average

daily motion in longitude is 0°. 985647.

91
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To establish a convenient measure of time not greatly different

from apparent solar time, a fictitious body is imagined to start

with the sun at perihelion and to move along the ecliptic with a

uniform daily motion in longitude of 0°.98665. Its longitude at

any time is 'called, appropriately enough, the " mean longitude of

the sun."

When this body reaches the vernal equinox, a second fictitious

body, called the " mean sun," is supposed to start out from that

point eastward along the equator, moving with a uniform velocity

equal to the mean daily motion of the sun in the ecliptic.

The mean sun, therefore, continually increases its right ascension

by 0°.985(55 per day ; and since both fictitious suns are at the vernal

equinox in longitude zero at the same instant and move at the same

rate, one in the ecliptic and the other in the equator, it is obvious

that at all times the right ascension of the mean sun is equal to

the sun's mean longitude.

The hour-angle of the mean sun is equal to the mean solar time,

just as the hour-angle of the true sun is equal to the apparent solar

time.

A clock, properly regulated and set so that it shows O*" 0™ 0'

at each successive passage of the mean sun over the meridian of

a given place, is said to keep the local mean time of that place.

When the hour-angle of the mean sun is 10°, 20°, 30°, the local

mean time is 0" 40", 1^ 20", 2", respectively.

It is of course true of the mean sun as of any other heavenly

body (see page 68) that its H.A. -f- E.A. = Sid. T. We may there-

fore write

:

H.A. of mean sun -|- E.A. of mean sun = Sid. T.

H.A. of sun -f E.A. of sun = Sid. T.

And from these equations, remembering the definitions of mean
and apparent time, we derive the following

:

Mean T. = App. T. + (E.A. of sun - E.A. of mean sun).

The quantity in the parenthesis, which must be added to App. T.

to give the corresponding Mean T., is called the equation of time.
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The equation of time is the difference between mean time and
apparent time, and when positive must be added to apparent time
to give the corresponding mean time, or subtracted from mean time
to iind the corresponding apparent time.

Standard Time It is now usual to regulate the clocks over large

sections of country to the mean time of a neighboring meridian.

Thus, clocks in the central part of the United States are set to

show 0"^ 0™ 0^ when the sun is in the meridian whose longitude

is 90° west of Greenwich, and they are said to keep Central

standard time ; which is, therefore, 6 hours slow of Greenwich

time. Other sections use the mean time of the 76th, 106th, and

120th meridians, 6, 7, and 8 hours slow of Greenwich, respectively.

More than one half the people of the United States use Central

standard time.

The fact that our watches are set to standard time is a convenience

in using the Almanac, since the watch time gives us Greenwich mean

time by applying so simple a correction, the minutes and seconds

being unchanged and the hours increased by a small constant number.

THE CALENDAR

About four-fifths of the Nautical Almanac consists of data regard-

ing the sun and moon, eighteen successive pages being devoted to

each month, and the corresponding pages of the different months

numbered with the Roman numerals from I to XVIII. These pages,

which form the Calendar, we will now consider in detail. The

reading matter of the Explanation which follows the tables should

be carefully read in connection with the following paragraphs:

reduced facsimiles of several pages are shown at page 176, to which

reference may be made.

The positions are given as they would appear to an observer at

the earth's center, and the times are, as stated at the head of each

page, Greenwich mean time. We pass at once to page II, which,

rather than the very similar page I, it will be always more con-

venient to use when, as in most of our observations, the Greenwich

time is known for which the data are required.
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Page II.—The first and second columns give the day of the week

and month. The third column contains the sun's apparent right

ascension at Gr. Mean Noon,— that is, its right ascension as affected

by the annual aberration (which makes it appear to be about 20"

behind its true place in its orbit) and measured from the actual

equinox of the date. Column 4 contains the hourly difference, or

the amount by which the right ascension is changing per hour.

To illustrate the use of this column, let it be required to find

the right ascension of the sun at the time of the first observa-

tion recorded on page 39 at 8'^ 54'" 37' a.m.. Eastern standard time,

March 8, 1900.

We must first notice that the corresponding astronomical time,

which is reckoned from noon to noon, is 20'' 54™ 37' after noon of

the preceding day, —that is, the local date was March 7'' 20" 54"" 37^

adding 5" to change E. Std. T. to G.M.T., we have March 7^ 25"

54"" 37', or March S* 1" 54"" 37', G.M.T.

The sun's right ascension, March 8, at Greenwich mean noon, is

given as 23'' 13'°57'.68. To this, since the sun's right ascension is

always increasing, must be added the change in 1'' 54'" 37' (= 1''.91),

the time elapsed since noon, which is obtained by multiplying the

hourly difference found in column 4 by 1.91 ; this gives the correc-

tion to be added to the tabular right ascension as 1.91 x 9'.237,

or 17'.64, and the right ascension at the time of observation was

therefore 23" 13-" 57'.68 + 17'.64, or 23" 14'" 15'.32.

This simple process, which is fully illustrated in the Explanation,

will never give a value more than 0'.4 in error. A method of inter-

polation by which an accuracy of O'.Ol may be attained is given in

the Explanation. The error of the simple method arises from the

fact that the hourly difference is not constant, as will appear at

once from inspection of the values in the fourth column.

Columns 5 and 6 give the sun's apparent declination and its

hourly difference. The value at any time may be found by inter-

polation in the manner just explained.

North declinations are regarded as positive, and south decli-

nations negative, and in accordance with this convention the hourly

difference is marked + when the change of declination is toward
the north and — when toward the south, so that the true declination
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is found by applying the correction algebraically : thus, to find the

declinations at 4 p.m., G.M.T., on the following dates, we have

:

1900
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Tlie ninth column contains tlie right ascension of the mean sun.

Since at mean noon the mean sun is on the meridian and since

(p. 59) tlie right ascension of a body which is on the meridian at

a given instant equals the sidereal time at that instant, the right

ascension of the mean sun at Greenwich mean noon equals the

Greenwich sidereal time at Greenwich mean noon, and this explains

the alternative heading which appears at the top of the column.

Since the right ascension of the mean sun increases uniformly,

the constant hourly difference requires no special column, but is

given at the foot of the page. For interpolation it is most con-

venient to use Table III, which occupies three of the last pages of

the Almanac, and gives directly the multiples of 9^856o by each hour

and minute up to 24 hours, thus saving the reduction of minutes to

decimals of an hour.

Example. Eight ascension of mean sun, January 16, 1900, at
4h 44m 3os_

R.A. mean sun, Gr. Mean Noon . . .... 1%^ 37™ 55>.26

Add ih 44m 30» X 9». 8505 (Table III) . . . 46.74

R.A. mean sun at 4'»44'>i30» ... . . 19 38 42.00

This is obviously the sidereal time of mean noon at a place in

longitude ^^ 44'" 30' west, and if desired a table of this quantity

may be computed for such a place by adding 46^74 to the values

given each day in the Almanac for Greenwich.

Page I— The quantities on page I are only used for reducing

meridianobservations of the sun, which are made, of course, at local

apparent noon. This page is convenient when the Greenwich mean
time has not been noted, for the time elapsed since the preceding
Greenwich apparent noon is equal to the west longitude of the

place of observation. This is the quantity, therefore, by which the
hourly difference must be multiplied to give the correction. An
example of the use of this page is given on page 104.

All the quantities given on page I may be found more easily from
page II if we know the G.M.T. for which they are required. The
only quantity for which we are obliged to consult page I is the
semi-diameter, and this never differs by so much as 0".01 from its

value at mean noon.
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Page III.— Column 2 gives the day of the year corresponding to

the given date, and is convenient for finding the number of days

intervening between dates. Thus, January 15, 1900, is the 15th

day of the year and September 25 is the 268th ; hence from noon,

January 15, to noon, September 25, is 268 — 15, or 253 days.

Column 3 contains the sun's longitude measured from the vernal

equinox of the given date. For some purposes it is more convenient

to measure from the mean equinox of the beginning of the fictitious

year, an epoch much used in astronomical calculations but of no

intrinsic interest. The minutes and seconds of the longitude as

thus measured are found in column 4. The longitude of column 3

is measured from the actual place of the equinox at the given date

as affected by precession and nutation.

Column 6 gives the sun's latitude, -which is always nearly but

not exactly zero, as will be explained further on in this chapter.

Column 7 gives the logarithm of the earth's distance from the

sun in astronomical units. An astronomical unit is equal to the

semi-axis major of the earth's orbit, — about 93,000,000 miles.

For those unacquainted with logarithms the following table will

make it easy to find by interpolation the approximate distance cor-

responding to a given logarithm.

Logarithm 9.9925000 corresponds to 0.9829 astronomical units.

9.9950000 " " 0.9886

9.9975000 " " 0.9943

" 0.0000000 " " 1.0000

" 0.0025000 " " 1.0058

0.0050000 " " 1.0116

0.0075000 " " 1.0174

Example. January 19, 1900, log radius vector = 9.99299, which

is very nearly ^ of the way from 9.9925 to 9.9950 ; hence on that

date the distance of the earth from the sun is J of the way between

0.9829 and 0.9886, or 0.9840 astronomical units. The value can be

obtained within less than ^^^ of its amount without interpolation

by taking the nearest value of the logarithm given in the table.

Column 9 gives the mean time at which the vernal equinox is on

the meridian of Greenwich (when the number of hours is greater

than 12 the time is after midnight, and therefore during the morning
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hours of the next civil date). This quantity is sometimes used in

converting sidereal to mean time, but its use may be easily avoided

and is sufficiently treated in the Explanation.

Page IV.— The quantities on page IV relate to the moon. They

are given for each 12 hours of Greenwich mean time, and seem to

call for no explanation, except perhaps the symbol 6, signifying

conjunction, which occurs once (and occasionally twice) upon each

page, on the day before or after that of new moon. Since successive

transits follow each other nearly 25 hours apart, in general one date

in each month would be left blank, the moon crossing the meridian

during the hour preceding noon of one date, and during the hour

following noon of the succeeding date. The symbol 6 occupies the

vacant space and marks the date of new moon.

Pages V to XII contain the right ascension and declination of the

moon for every hour of G.M.T., together with their differences for

each minute of time. The rapid motion of the moon makes it necessary

to give these quantities at shorter intervals than suf&ce for the sun,

in order that an equal accuracy may be attained in interpolation.

These are of course places as seen from the earth's center, and

it is to be remembered that at any point on the earth's surface the

moon may be displaced by parallax a little more than 1°.

On page XII are given the exact dates to the nearest hour of

G.M.T. of the moon's phases and the times of perigee and apogee.

Pages XIII to XVIII contain tables of " lunar distances,"— that

is, distances for each three hours of Greenwich mean time between
the moon's center and certain bright stars and planets not far from
the plane of its motion ; the sun is included in the list, as the moon
is often visible in full daylight, so that its distance from the sun

may be easily measured.

This table is used in determining longitude ; the local time being

known, the G.M.T. may be found by the method of lunar distances,

as follows : The distance from moon to star or sun being measured
is found to lie between two distances given in the table ; the G.M.T.
of the observation then lies between the hours corresponding to the
two tabular distances, and its exact value may be determined by
interpolation. The difference between this time and the known
local time of the observation is the longitude.
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The method requires accurate observations, and troublesome com-
putations are necessary to correct the measured distance for the
effects of refraction and parallax so as to find the distance from
moon to star as seen from the earth's center.

Data for the Planets, Eclipses.— Following the calendar pages of
the Nautical Almanac are thirty pages giving the right ascension
and declination and the time of meridian passage of the five planets

which are visible to the naked eye, and three pages containing the

right ascensions and declinations of 150 of the brighter fixed stars.

A few pages are devoted to the eclipses of the year, with maps
from which may be obtained the approximate times of the successive

phases of the solar eclipses as seen from any given point of obser-

vation on the earth.

EXAMINATION OF THE SEVERAL COLUMNS

Having given this general summary of the contents of the tables,

we will now call attention to some of the interesting facts and rela-

tions that appear on running through the various columns throughout

the whole year.

The date of the solstices may be determined as the days on which

the sun's declination has its maximum northern and southern values.

The date of the equinoxes may be found, from either the right

ascension or declination columns, as the date on which the decli-

nation changes sign, and the right ascension is either O'^ or IZ*"; the

exact time may be found by interpolation. (See page 107.)

The number of days between the equinoxes may be determined

by using the column of days, page III. It will be found that the

sun is for some days more than half the year in that part of its

orbit which lies in the northern hemisphere.

The column of hourly difference shows that the declination is

changing slowly at the solstices and most rapidly at the equinoxes
;

moreover, the change at the latter dates is nearly uniform both in

right ascension and declination, as stated on page 85. If a right

triangle be drawn with the difference in right ascension for the

date of the equinox as base and difference in declination as alti-

tude, the angle between the base and the hypotenuse measured by
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a protractor will be found to be 23^°. It obviously equals the angle

between the equator and the ecliptic.

Notice that the equation of time is the difference between right

ascension of mean and true sun, as stated on page 92, thus :

From the Almanac for 1900 (p. II), we have the following

values : January 21, Sun's E.A. = 20^ 13"" 2^79 ; E.A. Mean Sun
_ oQh im 34^61. Subtracting the latter from the former, we have for

the equation of time + 11" 2SM8. This is the value given on page II

;

the positive sign indicates that it is to be added to apparent time to

find mean time, or subtracted from mean time to find apparent time.

The dates on which the equation of time is and dates and values

of greatest and least equations should be noticed ; also that on those

dates for which the equation is the values of the sun's right ascen-

sion and declination, etc., on pages I and II, are the same, since

apparent noon and mean noon coincide. For 1900 the civil dates

are as follows

:

Eq. of t.

February 11 . . . . ... . . + 14m 27".28

April 15 .... . .» . . .

May 15 . . . . . . . .
_ 3m 498.40

June 14 . . .

July 27 . . . . . + 6m 178.22

September 1 . . .... . . ...
November 3 . . . . . . . .

_ igm 20'.40

December 25 . . . . .

The hourly difference of the right ascension of the mean sun has
the same integers as the mean daily motion of the sun in longitude,

0°.98565 0.98565 X 3600"

^T-' °'
2r

hour, and reducing this to seconds of time by dividing by 15, we
find the motion of the mean sun to be 9».8565 per hour. This illus-

trates the fact that the mean motion of the sun in longitude (0°.98565
per day) is the same as that of the mean sun in right ascension
(9^8565 per hour), page 92.

The column which gives the sun's latitude will repay an investi-

gation. It appears at a glance that there is a small but regular
change, from south to north and return, with a period of about 27
or 28 days.

0.98565; for 0°.98565 per day = "L^^^, ^^ , p^,.
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The principal cause of this is that it is not the earth, but the
center of gravity of the earth and moon, which describes an orbit
in the plane of the ecliptic ; and by the known properties of the
center of gravity, when the moon is above the ecliptic the earth
must be below. It is not very difficult to show that from this cause
the latitude may be 0".67 greater or less than when both bodies are
in the ecliptic, that is, when the moon is at one of her nodes.
The attractions of Venus and Jupiter also draw the earth out of the

ecliptic by an amount which may reach 0".5. In January, 1900, this

" planetary perturbation " was about + 0".13. The total range of lat-

itude during the month (see page 178) was from + 0".68 to — 0".48.

The moon was at her nodes January 12.33 and January 26.85.

From the radius vector column (p. Ill) we may find the sun's

distance at any date by the table on page 97. By comparing this

with the semi-diameter column (p. I), it is shown that the sun's

distance is inversely proportional to its angular semi-diameter.

Thus, January 1, 1904 :

Log r = 9.9926540, Dist. = 0.9832, Semi-diam. = 16' 17".90

and July 1, 1904 :

Log r = 0.0072095, Dist. = 1.0167, Semi-diam. = 15' 45".67

and
0.9832 : 1.0167 = 946".67 : 977".90,

as appears on multiplying the means and extremes and comparing

the products.

The dates of the moon's perigee and apogee may be determined

from the greatest and least semi-diameter, page IV, column 2, or

from the greatest and least parallax in column 4. Since both semi-

diameter and parallax are inversely proportional to the moon's

distance from the earth, the latter may be determined by multiplying

the former by a constant quantity. This constant is 3.6625, and it

is not difiicult to show that it is the ratio of the earth's equatorial

radius to that of the moon.

Compare the last two columns, noting that at new moon the moon

comes to the meridian with the sun at noon and that at full moon

(age 15 days) it comes to the meridian at midnight.
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TABLES OF THE PLANETS AND STARS

The data for the planets which follow the calendar pages illus-

trate many facts which are explained in the text-books on descriptive

astronomy.

Retrograde motion, for example, is shown by negative hourly

differences in right ascension ; the stationary points occur on those

dates on which the hourly difference changes sign ; opposition takes

place when the time of transit is 12*; conjunction, when it is 0";

the retrograde motion is a maximum at opposition.

By means of the right ascensions and declinations the path for

the year may be plotted on a star map, for which purpose an ecliptic

map (see page 65) is especially adapted.

The time of passing the node may be found from the point where

the path cuts the ecliptic, and the sidereal period from the interval

between two passages of the same node.

A series of Almanacs covering some years is useful in following

the outer planets as well as for comparison of the calendar pages to

show the repetition of the solar data after four years.

The table of star places contains columns of annual variation, —
that is, the sum of the precession and proper motion (the latter

always a very small quantity),— which are useful in showing the

effects of precession on the right ascensions and declinations of

stars in different parts of the heavens. Compare in this respect

8 Draconis, ji Ursee Minoris, Polaris, y Pegasi, rj Geminorum, and

\ Sagitarii.

COMPARISONS OF OBSERVATIONS WITH THE EPHEMERIS

Many of the facts which we have obtained by observation in

former chapters may be found in the columns of the Almanac, and

after a thorough comprehension of the methods has been acquired

much time may be saved by employing these data ; but it is to be

remembered that facts thus obtained are not so thoroughly grasped

or so easily retained. With this caution, we may compare some of

the results of our previous work with the tables, to give an idea of

the methods of using the latter. Following are comparisons of a
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few of the observations of the preceding chapters with the values
given by the Ephemeris :

Observations of the Moon From careful measurement of the map
on page 29, the moon's declination on January 9, 1900, at 10
P.M., was + 19°.3, and its right ascension was 2'> 38"". The place of

observation was 4'» 44'".5 west of Greenwich, and the time used was
Eastern standard time, which is 6 hours slow of Greenwich; the

G.M.T. was therefore 15" 0"", at which time the moon's declination

and right ascension are given in the Ephemeris (p. 180) as + 18° 48'

and 2^ 39'". The difference between the observed and calculated

places is about ^° in declination and 1'" in right ascension, mainly

due to error of observation with the cross-staff.

Length of the. Month.—We may use the Ephemeris to find the

length of the month by seeking the next date at which the moon's

right ascension and declination are the same, which is February 5,

at about 21 hours, G.M.T., as will be seen from page VI for February.

This gives 27"* 6"^ as the period of the moon's revolution among the

stars.

Passing to page V for December, we find that the right ascension

was again 2^ 39"" on December 3 at 19 hours, at which time the

declination was 17° 19'. This shows that the moon's orbit had

shifted during this time so that it did not pass through exactly the

same points of the heavens in these two months, its December path

in the neighborhood of right ascension 2'' 39"" being 1^° south of

the corresponding point of its path in January.

By column 2 of page III, January 9 is the 9th day of the year

and December 3 is the 337th ; hence the moon completed an integral

number of revolutions in 337" IQ'' - 9'^ 15", or 328* 4"

The period having been determined as 27^ days approximately

and 328 -^ 27J being nearly 12, it is evident that the number of

complete revolutions between these dates is 12. Dividing 328'' 4"

by 12, we have 27'^ 8" as a closer approximation to the sidereal

month.

Taking the length of the successive months during the year, it is

interesting to note how very considerable is the difference in length

of the successive sidereal months due to the "perturbations" of

the moon's motion.
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Observations at Apparent Noon The observations recorded on

page 39 were made at Cambridge, in longitude i^ 44'°.5 west of

Greenwich, and the watch time of apparent noon was ll"" 66'" 2^9.

By the use of the Almanac, we find the correction of the watch

to standard time as follows :

Since the observation was made at local apparent noon, it will

be better to use page I of the Almanac, which gives for March 8,

at Greenwich apparent noon, equation of time 11™ 1'.46, to be added

to apparent time, and hourly difference 0^619.

The time of observation was 4* 44™.6, or nearly 4''.7o later, and

the change of the equation of time in this interval was 4.75 X 0^619

=^'.93. As the equation of time was decreasing, its value at the

time of observation was 10"" 68^53. Since no sign, is appended to

the hourly diiference, we check this result by noting that it falls

between the values tabulated for March 8 and 9. Hence :

Camb. App. T. .

Eq. of T. (add) . . .

Camb. M.T.

Corr. for Long.

G.M.T. of observation

Subtracting

Eastern Std. T. of observation

Observed watch time . .

Corr. of watch to Std. T. .

1211 0" 0»

10 58 .53

12
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time), the right ascension of Venus was 9°.64 = SS"" 33^6 less than
that of y Pegasi, which from the Ephemeris was 0" 8" 5^69 ; hence
from this differential observation the right ascension of Venus was
231^ 29'n 32^09.

The G.M.T. of the observation was 12" 12"" = 12'^.2.

The tables for Venus (p. 224) give :

February 5

At Gr. M. noon
Diff. for 12'>.2

At 12ii 12m G.M.T.

E.A. OF Venus

231>25>"38M4

+ 2 15.49

23 27 53.63

Observed values (p. 53) 23 29 32 .

1

Decl.

- 4° 55' 46"

+ 15 43

-4 40 3

4 32

H. DiFFS.

+ 11M06 + 77".31

X 12.2 X 12 .2

135 .49

2"" 15". 49

943 .2

15' 43". 2

The observation differs from the Ephemeris by 1"" 38' in right

ascension and 8' in declination, although the method should give

angles within 0°.2. The discrepancy is much greater than usually

occurs, and this observation of Venus is affected by some unexplained

error ; it depends on a single reading of the hour-angle. To exhibit

the usual accuracy, we may compare with the following observa-

tions, made February 6

:



Decl.
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Determination of the Equinox— The following data from the Alma-

nacs of 1899 and 1900 may be compared with the results of page 89 :

At Gk. App. Noox SUN'S Decl. DIFF. Date of Equinox by Intekpolation

1899. Sept. 22.0

23.0

1900. Sept. 23.0

24.0

+ 0° 18' 8". 7

-0 5 13 .9

+ 26 .4

-0 22 57 .5

23'22".6

23 23 .9

22d + ii-LlL days = Sept. 22.77620
23' 22". 6

23d + i?l??-Adays = Sept. 23.01880
23' 23". 9

The longitude of the place of observation was 4^ 48™ 40« W.

4h 48" 40' 4.81111

24"^ 24
days = 04.20046.

Hence the local dates of the equinoxes were September 22.57574,

1899, and September 22.81834, 1900, and the length of the tropical

year was 365.24260 days, as compared with the observed values

f September 22.714, 1899,

September 22.856, 1900.

[ 365.14 days.

Observations of Star Places The right ascensions and declinations

of the stars given on pages 86 and 89 may be compared with the

mean places given in the Nautical Almanac for 1899 and 1900, or,

better, with the apparent places given in Part II of the American

Ephemeris. From the latter we find for September 22, 1900 :

E.A. DECL.

„ Serpentis 18" 16- 11».4

XSagittarii 18 21 51 .9

Vega
Altair . ....

18 33 35.5

19 45 57.9

- 2° 55'. 3

- 25 28 .5

+ 38 41 .8

+ 8 36 .6

which are in close agreement with the results of observation.



CHAPTER VIII

THE CELESTIAL GLOBE

When a globe such as that described on page 63 has had a num-

ber of constellations plotted on it in their proper positions, and the

sun's path added, showing the positions occupied by the sun at dif-

ferent times of the year, it becomes a very useful apparatus for

many purposes.

If, for instance, it is so placed that its axis points to the pole,

and is turned about the axis until the place of the sun as marked

on the globe for a certain date is on the under side and in a vertical

plane through the center, the sphere will represent the heavens as

seen at midnight on the given date.

When the globe has been so adjusted, if a straight line is drawn

from the center to any star on the surface of the globe, the prolon-

gation of this line will lead to the real star at the point which it

occupies on the sphere of the heavens. Thus used, such a globe is

helpful to a beginner in identifying the constellations. Obviously

the plane of the sun's path on the globe, if extended to the heavens,

will mark out the ecliptic, and all the hour-circles and parallels of

declination will mark the corresponding circles in the sky.

If the globe is turned slowly about its axis so that a point on

the equator moves from east to west through 15° per hour, we have

a sort of working model of the moving sphere of the heavens on

which we may measure off arcs and angles and thus solve approxi-

mately many problems suggesting themselves to one beginning to

study the apparent motions of the heavens. Such an apparatus has

from very early times been an important aid to astronomers and

students of astronomy, and no aid is so useful in arriving easily at

correct ideas on the subject. Especially was it useful and appropri-

ate in those days when the mechanism of the heavens was believed

to correspond closely to that of the model and the globe was regarded

as being a fair representation of their actual construction,— in fact,

108
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a representation of the eighth or outer sphere which carried the

fixed stars, turning about a material axis somehow fixed in the

" Primum Mobile." The planets moving inside, each in its crystal

sphere, were treated by projecting them each on to its proper place

on the outside sphere for any particular time to solve a given prob-

lem. For the beginner, who stands to a certain extent in the place

of the early astronomers, it is still most important in studying many
problems. Usually the diagrams by which we illustrate our state-

ments of astronomical problems are drawn as if the celestial sphere

were seen from the outside as we see the globe. This is because

it is impossible to represent on a plane any large part of a spherical

surface as seen from the inside.

As usually constructed for demonstration and the solution of

problems, the celestial globe is made by building up layers of strong

paper laid in glue upon a solid wooden sphere so as to cover it with a

light but stiff shell, which is then cut through along a great circle,

so that the core may be taken out. The two halves of the shell

are fastened together by gluing on a strip of thin, strong cloth,

and after passing an axis of stiff wire through the center, several

layers of a mixture of glue and whiting are applied to the surface,

each being smoothed before drying. The whole is then turned so

as to form a very light and accurate spherical shell. Upon the

surface are pasted gores of paper, on which the circles and principal

stars are printed in such a manner as to lie in their proper places

on the globe. The outlines of the constellations are shown on the

plates, and the conventional figures which have been ascribed to

them. A small circular piece centered on the pole completes the

map. The figures are colored by hand, and the whole is then cov-

ered with a hard, transparent varnish.

Both equinoctial and ecliptic are graduated to degrees, and the

hours of right ascension on the former are marked by Eoman

numerals. The places of the sun are usually indicated on the

ecliptic at dates five days apart. Since the circuit of the sun is

completed in 365i days, while the length of the year is sometimes

365 and sometimes 366 days, an average position of the sun must be

chosen, which is done with sufficient accuracy by plotting its place

for the second year after leap year.
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The axis of the globe is supported by a stiff brass circle, so that

the center of the sphere lies exactly in the plane of one of its

faces, and this face is graduated into degrees, one semicircle near

the outer edge from 0° at either pole to 90° at the equator, and the

other semicircle near the inner edge from 0° at the equator to 90°

at either pole. The inner graduation is used for measuring the

angular distance from the equator to any point on the globe, that is,

the declination of any point. The graduation on the outer edge

is used for placing the axis at the proper angle to the horizon in

rectifying the globe, as explained on page 111. This graduated

circle which supports the axis is called the " brass meridian." It

is mounted in two slots in a somewhat larger wooden circle called

the " horizon," in such a manner that it is perpendicular to the

latter and that its center lies in the plane of the upper surface of

the wooden circle.

The horizon is graduated on its inner edge, and each quadrant

has two sets of numbers, one of which reads from 0° at the prime

vertical to 90° at the meridian, and the other from 0° at the

meridian to 90° at the prime vertical. These numbers serve for

the direct reading of amplitude and bearing respectively, which are

easily translated into azimuth, remembering that W. is 90°, N. 180°,

and E. 270°, if azimuth is measured from the south point toward

the west from 0° to 360°. The brass meridian may be turned in its

own plane, sliding easily in the slots so that the axis of the globe

shall make any desired angle with the horizon.

If tlie globe is accurately made and mounted, its center will coin-

cide with the common center of the graduated face of the brass

meridian and the upper surface of the horizon, whatever may
be the inclination of the axis. No irregularities should appear
in the small space between these circles and the surface of the

globe when the latter is whirled rapidly on its axis. Some idea

of the correct placing of the circles on the globe may be obtained
by noting whether all points of the equator and parallels come
under the proper divisions of the brass meridian, whether all points
of the equator pass through the east and west points of the horizon
90° ffffm the graduated face of the brass meridian, and whether
the points of the equator which lie in the east and west points of
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the horizon are twelve hours apart whatever the inclination of
the axis.

It is desirable to have a means of fixing a point on the globe by
some mark that may be afterward removed without injuring the sur-

face. Gummed paper should not be used : small pieces of unglazed

paper when well moistened will adhere long enough for ordinary

purposes.

A good mark may be made with water-color paint mixed with
glycerine so as to be very thick and applied with a rubber point or

soft pen point. Such a mark may easily be removed with a moist-

ened finger even after several weeks.

Ink suitable for fountain pens is usually safe if removed within

an hour or two.

TO RECTIFY THE GLOBE

In order that the globe shall represent the heavens at any partic-

ular place, the axis must be inclined to the horizon by an angle

equal to the latitude. This may be accomplished by rotating the

brass meridian in its plane and measuring the angle of elevation of

the pole by the outside graduation, which reads from 0° at the pole

to 90° at the equator. This process is called " rectifying " the globe

for a given place.

Having been rectified for a given place, the globe may be rectified

for a given time by bringing it to such a position that a line drawn

from its center to any star is parallel to the line drawn from the

given place to the actual place of the star in the heavens at the

given time. For this purpose, the pole being elevated to the proper

inclination, that is, the latitude, the whole apparatus is turned on

its base until the brass meridian is in the meridian of the place,

and the globe is turned on the polar axis until some one point is

known to be in the proper position ; then all points of the globe

will be in their proper positions.

The point chosen for this purpose will vary with circumstances.

If the local sidereal time is given, it is only necessary to place the

globe so that the hour-angle of the vernal equinox equals the given

sidereal time. (See page 57.) This is easily done by the graduation
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of the equator on the globe. When the hour-angle of the vernal

equinox is l"*, 2*", 3'^, the reading of the equinoctial under the brass

meridian is 1'', 2\ 3'^, etc., and the globe is therefore rectified to a

given sidereal time by turning it about the polar axis until the given

sidereal time is brought to the graduated face of the brass meridian.

The vernal equinox will then be at the proper hour-angle and all

points on the globe will be properly related to the corresponding

points on the sky.

If the apparent time is given, the globe may be rectified by the

following process. Mark the place of the sun in the ecliptic for

the given day. Bring this point to the meridian, which rectifies

the globe for apparent noon ; then, to rectify it for the given ap-

parent time, it is necessary to turn the globe until the hour-angle

of the sun is equal to the given apparent time. This may be done

by using the graduations of the equator as follows. Rectify for

apparent noon and read the hours and minutes of the graduation

on the equinoctial which comes under the brass meridian (this is

the sidereal time of apparent noon). Add to this reading the given

apparent time, and the sum will be the hours and minutes of the

equatorial graduation that must be brought to the meridian to

place the sun at the proper hour-angle.

If local mean time is given, the apparent time may be obtained

by appl3'ing the correction for the equation of time for the given

date, and the globe may then be rectified for apparent time, as

described in the last paragraph.

If, as will generally be the case, standard time is given, this may
be reduced to local mean time by applying the correction for longi-

tude, and we may then proceed as before.

We may here remark that in rectifying the globe for solar time

we make use of the sun's place as marked on the ecliptic for the

given date ; and that this place may be inaccurate by as much as

half a degree is obvious from the following consideration. Suppose
the place of the sun on the globe to be exact for any one year on
February 28. It will be exact on March 1 or about 1° in error,

according as the year has not or has the date February 29. The
following table of the sun's longitude shows more clearly the
nature of the facts.
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PROBLEMS WHICH DO NOT REQUIRE RECTIFICATION

OF THE GLOBE

Many problems are independent of the position of the observer

on the earth's surface, and for their solution it is immaterial at

what angle the polar axis is inclined. By bringing the axis to the

plane of the horizon, any star may be brought to view above the

horizon, but unless it is convenient to stand so that one can look

down upon the globe from above, it is often better to take a sitting

jjosition and place the polar axis nearly vertical. In following the

solutions of the examples below, the accompanying figures serve to

show whether the globe has been brought to the proper position.

Problem 1.— To find the right ascension and declination of a star.

Rotate the globe until the star is in the plane of the brass

meridian
; note the hours, minutes, and seconds of that graduation

of the equinoctial which falls under the brass meridian. This is the

right ascension of the star. This value we
may call the "meridian reading" of the

equator and in future abbreviate to R.A.j\L

(right ascension of the meridian). The
declination of the star equals that degree

of the graduation of the meridian under

which the star lies.

Example 1. The star i^ Ursse Majoris in

the end of the Dipper handle is brought to

the brass meridian (Fig. 42) and is found

to lie halfway between the divisions 49 and

50 north of the equator ; the declination is

therefore + 49°.5. The meridian reading

is 13" 44™, which is the star's right ascen-

sion. (For reading the declination the graduations on the inner

edge of the brass meridian must be used.)

Problem 2.— Given the right ascension and declination of a star,

to find the star.

Rotate the globe until the meridian reading (R.A.M.) is equal to

the given right ascension, and under the brass meridian at the

given declination will be found the star.

Fig. 42. R.A.M. w «»
Deol. + 401°
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Fig. 43. E.A.M. 19i> 46»
;

Deol. + SJ-

Example 2. The right ascension of a certain star is 19* 46» and
its declination + 8^°. What is the star ?

The division on the equator marked 19" 46- is brought to the
brass meridian (Pig. 43), and halfway between the graduations 8
and 9 on the meridian is found Altair, which
is the star sought.

Problem 3. — To find the angular distance

between two stars.

Place the flexible quadrant along the sur-

face of the globe so that its graduated edge
passes through both stars, and read the

graduation at the points where it touches

each star ; the difference of the readings is

the angular distance between the stars. The
graduated edge should lie along the great

circle; as this is not always easy to adjust,

it is well to repeat the measure with the

quadrant in different adjustments and take

the smallest value obtained. An alternative method free from this

source of error is to adjust the points of a pair of compasses so that

they may just span the distance between the two stars. The com-
passes may then be applied to the globe

with one leg at the vernal equinox (0°); the

other leg being brought to the equinoctial

its reading will give the angular distance

between the stars. To guard against defects

in the globe, the second point may be

brought to the ecliptic, and the reading

should be the same as on the equinoctial

;

if the readings differ, the mean of the values

should be taken.

In the use of the compasses care must

be taken not to scratch the surface of the
Fig. 44. Length of Dipper 26° _.-|_y,p

Example 3. The following measures were made to determine the

distance between alJrsse Majoris and rjUrsse Majoris. With the

flexible quadrant applied to the globe (Pig. 44) so as to lie as nearly
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as possible along the great circle between the stars, the readings

were

:

ij URSiE MAJORIS a URSJE MAJOEIS DlSTAKCE

0.0 26.0 26.0

CO 26.1 26.1

20.0 46.1 26.1

40.0 66.1 26.1

Here no difficulty was found in laying the arc along the great

circle, as the distance is not great, and the value is taken to be

26M. Adjusting the points of a pair of compasses to the stars

and then placing the compasses with one point at the vernal equi-

nox, the other point was found to reach to 25°. 6 of right ascension

on the equinoctial and to 25°.6 of longitude on the ecliptic, which

gives the distance between the stars as 25°.6.

Problem 4.— To find the sun's longitude, right ascension, and

declination at a given date.

If the sun's place at different dates is marked on the ecliptic,

its longitude may be read off directly on the graduations of the

ecliptic. In all old globes, however, and in many modern ones the

ecliptic is not thus marked, and the place of the sun must be

found by determining the longitude by a table such as that given

on page 173, which is nearly correct for the first half of the present

century. A substitute for this table is generally to be found in

the form of two contiguous concentric circles on the horizon circle,

one graduated into degrees of longitude and the other into months

and days, so that the line for a given date in the outer circle is

found opposite the corresponding degree of the sun's longitude in

the inner circle. Commonly also the divisions both of this circle

and of the ecliptic are divided into groups of 30°, each correspond-
ing roughly to one month of time. The 30° of Aries reach from the
first of Aries on March 20 to the first of Taurus on April 20, and so
on in the order of the signs. Thus, opposite May 6 is the fifteenth

degree of Taurus, corresponding to longitude 45° in the usual way
of reckoning

; opposite January 1 is the tenth degree of Capricor-
nus, nine complete signs and 10°, or longitude 280°. In the table

on page 173 the equivalents of the degrees, of longitude are given
in signs and degrees.
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By whatever method the sun's place in the ecliptic is fixed,

its right ascension and declination are found by the method of
Problem 1.

Example 4. What are the sun's right ascension and declination
,

on April 20 ?

The longitude is found by the table to be 29°.5, and on bringing
this point of the ecliptic to the meridian (Fig. 45) it is found to be
in declination +11^°, while the reading of

the meridian is l^^ 50™- The sun's right

ascension is therefore 1'' 60"" and its decli-

nation is 11^° north.

Fig. 45. Sun's E.A. It 53"

Deol. + lli°

PROBLEMS WHICH REQUIRE RECTI-

FICATION OF THE GLOBE FOR A

GIVEN TIME

Such are problems which require a deter-

mination of the angle between the meridian

and some one of the hour-circles of the

globe. They are independent of the latitude

of the place of observation, but depend upon the position of the

heavenly bodies with respect to the meridian. The brass meridian

being taken as the meridian of the place of observation, the only

quantities involved are differences of hour-angle and of right

ascension, and it will be advisable here to collect the following rela-

tions, which have already been explained.

All time is measured by the continually increasing hour-angle of

some point of the celestial sphere.

Local sidereal time (Camb. Sid. T.) is the hour-angle of the vernal

equinox.

Local apparent (solar) time (Camb. App. T.) is the hour-angle

of the sun.

Local mean (solar) time (Camb. M. T.) is the hour-angle of the

mean sun.

For example, at 21" 20™, Camb. Sid. T., the hour-angle of the

vernal equinox at Cambridge is 21>' 20™ ; at 10'' 30™, Chicago apparent
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time, the hour-angle of the sun at Chicago is 10" SO"" ; at 5^ lO",

New York mean time, the hour-angle of the mean sun at New York

is 5" 10™.

The hour-angle is in all cases measured westward from the

observer's meridian up to 2iK

Greenwich mean time (G.M.T.) is the hour-angle of the mean

sun measured from the meridian of Greenwich. When we say

that a place is a certain number of hours and minutes of longitude

west of Greenwich, we mean that the rotation of the earth brings

the sun to the meridian of the place just so many hours and minutes

after its arrival at the meridian of Greenwich. At local noon, then,

its hour-angle, reckoned from the Greenwich meridian, is equal to

the difference of longitude between the two meridians. As the sun

thereafter moves westward equally from the two meridians, Green-

wich time is always greater than that of any place west of it by
exactly the difference of their longitudes.

Therefore, to find the G.^I.T. corresponding to a given local mean
time, we add to the latter the longitude (west) from Greenwich.

Standard time is directly obtained from G.M.T. by subtracting 4,

5, 6, 7, 8 hours, respectively, for Colonial, Eastern, Central, Moun-
tain, and Pacific time. Thus, the "reduction for longitude," so

called, from Cambridge mean time is -|- 4'^ 44".5 to G.^M.T. and

+ 4b 44ni_5 _ 5h to Eastern standard time

;

or, by a single operation, — 15™.5 directly to

Eastern time. The " reduction for longi-

tude" for San Francisco is -|-
S'' 9™.7 to

Greenwich and -|- 8^ 9".7 — 8" = -f 9".7 to

Pacific time. Problems, therefore, which

involve standard time require a knowledge

of the observer's longitude.

Problem 5.— To rectify the globe for a

given sidereal time.

Eotate the globe till the E.A.]\I. equals

the given sidereal time. This brings the

vernal equinox to an hour-angle equal to

the given sidereal time, and all points of the sphere into their

proper relation to the meridian.

Fig, 46. Sid. T. 7' 50"
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Example 5. To rectify the globe for 1^ 60™ sidereal time, rotate

the globe until R.A.M. is 7" 50™ (Fig. 46).

Problem 6. — The globe being rectified for a given sidereal time,

to determine the hour angle of a body.

Note the R.A.M. when the globe is in the given position; then

bring the body to the meridian and read its right ascension. Sub-

tract the latter reading from the former and the result is the hour-

angle of the body.

Since the reading of the meridian is always the sidereal time

(page 59), this process exemplifies the equation H.A. = Sid. T.

— E.A. It is of course understood that if in adding two times

or hour-angles the result is greater than twenty-four hours, that

amount is to be subtracted ; thus, an hour-angle of 35" 25"" 10^

corresponds to the same position as an hour-angle of ll"" 25°^ 10^

Also, if it is required to subtract a larger from a smaller hour-

angle, the latter should be increased by twenty-four hours before

performing the subtraction : thus, 6'^ 41™

— ll'' IT™ = 30'^ 41™ - ll'' 17™ = 19'^ 24™.

Example 6. What is the hour-angle of

Sirius at (a) 1^ 50™, sidereal time, and at

(6) 4'' 20™, sidereal time ?

(a) Rectifying the globe, as in Problem

5, to 7"^ 60™ Sid. T., the R.A.M. = 7'' 50™.

Bringing Sirius to the meridian (Fig. 47),

R.A.M. = &" 41™ = R.A. of Sirius, as in

Problem 1. Hence H.A. of Sirius at

7'^ 50™ Sid. T. = 7'' 60™ - 6'^ 41™ = V 9™

(Fig. 46).

(b) Rectifying to 4^^ 20™ Sid. T., E.A.]\L

= 4'' 20™, and, as before, H.A. = 4" 20™

6" 41™ = 21'' 39™.

Problem 7.— The globe being rectified for a given apparent time, to

determine the hour-angle of a body.

Bring the sun's place to the meridian and take the R.A.M. (this

is the sun's right ascension. Problem 4). Rotate the globe through

an hour-angle equal to the given apparent time, and the sun is

brought to the required hour-angle; the R.A.M. thus becomes H.A.

Fig. 47. E.A. of Sirius, ^ 41"

gh 41m^28'' 20™-
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of the sun + E.A. of the sun, and the globe is properly rectified

when this reading of the equator is brought under the meridian.

Since H.A. + E.A. = Sid. T., the rule may be given as follows :

Determine the sun's right ascension by the globe (Problem 4).

Add the given apparent time. The sum is the sidereal time.

For this sidereal time rectify the globe by Problem 5, and find the

hour-angle by Problem 6.

Example 7. What is the hour-angle of Sirius at 10 p.m., apparent

time, February 13 ?

Sun's R.A. by globe

App. T
Sid. T
R.A. of Sirius by globe

H.A. of Sirius ....
Problem 8. —• The globe being rectified for a given mean time, to

determine the hour-angle of a bodi/.

Apply the equation of time (with the proper sign) to the given

mean time to find the corresponding apparent time, and with this

value rectify as in Problem 7.

Example 8. "What is the hour-angle of Sirius at 5 a.m., local mean
time, July 10 ?

Equation of time -\- 5™ (add to App. T.)

July 10, 5 A.M. . . ... = July Q* 17'» 0™
Eq. of T. (subtract) .... 5

App. T. . . .

Sun's R.A. by globe (add) . .

Sid. T ...
R.A. of Sirius (Problem 1) (subtract) . .

H.A. of Sirius . . . . . . . Yy 34

Problems.— The globe being rectified for a given standard time, to

determ ine the hour-angle of a body.

Apply the reduction for longitude to find the corresponding mean
time and rectify as in Problem 8.

* The sun's place is marked on the globe for noon of the indicated date. It
is therefore more accurate in this problem to make use of the sun's place for
July 10 and in general for the nearest noon, which is always that of the civil

date.

16
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Example 9. At Chicago (longitude + 5'^ 50"") what is the hour-
angle of Sirius at 6.30 p.m., Central standard time, October 30 ?

Red. for Long. Chicago T. to Central T. - lO™
Eq. of T. — 16™ (subtract from App. T.)

Central standard time

Red. of Long, to Chicago M. T. .

Chicago M. T
Eq. of T. (add to M. T.) . .

App. T
Sun's R.A. by globe (add) ...
Chicago Sid. T . .

R.A. of Sirius (subtract) ...
H.A. of Sirius (by Problem 5) . . . . . . 14 38

6i> SO-"

+ 10



CHAPTER IX

EXAMPLES OF THE USE OF THE GLOBE

Most of the problems with which we have to deal require that

the observer's exact place on the earth shall be known,— that is,

his latitude as well as his longitude ; and in order that they may

be solved it is necessary that the globe should be rectified to the

latitude by inclining the axis to the horizon by an angle equal to

the latitude.

This chapter contains some typical examples and the methods

by which they are solved, with references to the problems of the

preceding chapter.* Attention should be paid to the arrangement

of the solutions, and all numerical results should be fully labeled

so that it may be seen how they are obtained and combined. In all

the problems, unless otherwise stated, the globe must be rectified to

the latitude of Cambridge, 42°.4 N. The longitude may be assumed
4h 44111 -nrgst of Greenwich.

Example 10. At what sidereal time do

the Pleiades rise at Cambridge ?

Rectify the globe by raising the north

pole to such an angle that the graduation

42°.4 on the outside edge of the brass merid-

ian coincides with the surface of the hori-

zon. Rotate the globe about the polar axis

until the Pleiades are in the plane of the

eastern horizon (Fig. 48). The R.A.M.

equals the sidereal time sought, — 20'' 12™.

This result is independent of the longitude.

The Pleiades rise at any place in latitude

42°.4 N. at 20" 12'° of local sidereal time.
Fig. 48. Rising of Pleiades :

20i> 12" Camb. Sid. T.

* These solutions were obtained with a not very accurate globe nine inches in

diameter. Better results may be obtained with a larger globe in good condition.

122
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Pig. 49. October 3

E.A. 141 17.

): Sun's

Example 11. At what apparent time do the Pleiades rise at Cam-

bridge on October 30 ?

Determine the sidereal time, as in the last example, 20'' 12""

The sun's right ascension is determined to be 14'' 17™ by bringing

it to the meridian (Fig. 49), as in Prob-

lem 4, and the relation App. T. = Sid. T. —
Sun's E.A. gives

20b 12-" - 14" 17™ = 5" 55™ Camb. App. T.

Example 12. At what Cambridge mean

time do the Pleiades rise October 30 ? Eq.

of T. = — 16™ (subtract from App. T.).

The apparent time being 5'' 55™ by the

last example, the mean time is 5" 55™ —
16™ = 5^ 39™.

Example IS. At what Eastern standard

time do the Pleiades rise at Cambridge

October 30?

The arrangement of the work is as follows :

Camb. Sid. T. by globe (Example 10) ... .

20ii 12"

Sun's E.A. by globe (Problem 4) . . . . . 14 17

Camb. App. T. (Example 11) ... .

Eq. of T. by table

Camb. M. T. (Example 12)

Ked. to E. Std. T
E. Std. T. of rising of Pleiades ... 5 23

Example H. At what standard time do

the Pleiades set at Cambridge March 1 ?

Bringing the Pleiades to the western

horizon, we have, as in Example 13 :

Camb. Sid. T. by globe (Fig. 50) .
11" IS-"

Sun's R.A. (Problem 4) . . . . 22 50

Camb. App. T. . . • •

Eq. of T. by table .

Camb. M. T
Eed. to E. Std. T
E. Std. T. of setting of Pleiades March 1

Example 16. What is the standard time

^'''
^sid^T 'nMS"^'""^

''

of sunrise at Cambridge on May 16 ?

5



124 LABORATORY ASTRONOMY

Mark the place of the sun on the ecliptic for May 15 and bring

this point to the plane of the eastern horizon (Fig. 61).

The R.A.M. gives the Camb. Sid. T. by

globe

Sun's R.A. (Problem 4) by globe .

Camb. App. T
Eq. of T. by table . . .

Camb. M. T. . . .

Red. for Long. .

Std. T. of sunrise May 15 . 16 40

Or, May 10, 4i» 40" a.m. But see the note to Prob-

lem 8. Since the place of the sun was taken for

May 15, the solution gives the time of sunrise for

that civil date.

2011 28"n
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of the globe, corresponding to the zenith of the sphere in latitude

42°.4 north.

The longitude of the sun for September 10 being found, by the

circles printed on the horizon for this purpose, to be 17°.7 in Virgo,

or five signs and 17°.7 = 167°.7, this point was brought into the

southwest quadrant halfway from the south

to the west point and the altitude arc made

to pass through it ; the altitude was seen to

be approximately 40°. The foot of the arc

was then moved about 20° toward the west

point and the sun's place brought to it ; the

altitude was now about 30°. The foot of

the arc was moved again about 20° farther

toward the west point and the sun's place

brought to it, the

sun's altitude being

about 15°. The arc •

Fig. 53. September 15: Sun's -^aS noW mOVed
Alt. 20°

: Az. 77".5
i i r lback a few degrees

toward the south and by a few trials a

position found (Fig. 53) such that the sun's

place coincided exactly with the division

marking an altitude of 20° ; the zero of the

graduated edge of the arc was then halfway

between 77° and 78° of the graduation on

the inner edge of the horizon circle. The

bearing was then S. 77°.5 W. and the azi-

muth 77°.5.

Example 18. At Cambridge Altair is east

of the meridian at an altitude of 30°. Find its azimuth and

hour-angle and the sidereal time. Bringing the place of Altair

to 30° on the flexible arc, as described in the last problem, the

bearing is found to be S. 73° E. Hence the azimuth is 287°. With

the same adjustment the E.A.M. is 15'^ 56-, which is the sidereal

time By bringing Altair to the meridian, its right ascension is

Fig. 54. Alt. of Altair 30°

:

H.A. 201' 13"»; Az. 287°;

Sid. T. IS' 56"

found to be ig^ 43", and, by Problem 5, H.A. = 15" 56

= 201^ IS-",

m _ igii 43n
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Example 19. On September 10, at Cambridge, in the forenoon,

the sun's altitude is 20°. What is tlie local mean time ?

The sun's longitude being 167°.7, as in

Example 17, its place is brought to 20° on

the flexible arc in the scfutheast quadrant

(at a bearing S. 78° E., with which compare

the result of Problem 17) and the problem

solved as follows :

Fig. 55. Sun's Alt. 20°

E.A.M. e' 42"

Sun's forenoon Alt. 20°

R.A.M
Sun's R.A. (Problem 4)

App. T
Eq. of T. by table

Camb. M. T. .

Or

6h 42m

11 13

19 29

19 26

7 26 A.M.

It would appear that our result means

7.26 A.M. of the following day. But it is to be remembered that we
have used the sun's place for September 10 (the places are marked
for noon), and our solution then applies more nearly to the morning

of that date. Example 19 is perhaps the most important that we
have solved, since it illustrates the method

by which the longitude is determined at

sea. The sun's altitude is measured by a

sextant and its hour-angle computed. From
the apparent time thus obtained the local

mean time is found as above and compared

with G.M.T. kept by a chronjometer.

Example 20. On July 10, at Cambridge,

what is the sun's hour-angle when it is in

the prime vertical ? What is the local

mean time ?

In the summer half of the year the sun

is in the prime vertical once in the fore-

noon and once in the afternoon, so that

there will be two solutions of the problem.

The place of the sun July 10 is found by the table to be in

longitude 107°. 7. The altitude arc being adjusted with its foot

Fig. 56. Sim in Prime Verti-

cal : July 10, forenoon

;

K.A.M. 31" 3»>
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at the east point of the horizon, the sun's place is brought to the

graduated edge of the arc and E.A.M. noted. The altitude arc

being brought in the same way to coincide with the west quadrant

of the prime vertical, the sun's place is brought again to the gradu-

ated edge and E.A.M. noted. Then the 5un's right ascension is

determined, and the results may be recorded and the computation

made in the following form :

Sun in prime vertical

R.A.M
Sun's K.A. by globe

App. T
Eq. of T. by table

Local M. T.

Or .

A.M.
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Example 22. What is the standard time corresponding to O"* of

sidereal time at Cambridge October 10 ?

The sidereal time being given, this problem is similar to Exam-

ples 13, 14, and 15, and illustrates the general process of passing

from sidereal to mean or standard time by means of the globe, thus :

Sid. T
Sun's R.A. by globe ....
App. T
Eq. of T. . .

Camb. M. T.

Red. for Long, to Std. T.

Eastern standard time .... . . . . 10 27

Example 23. Find the altitude and azimuth of Arcturus at

8 P.M., standard time, at Cambridge, September 10.

This problem requires the globe to be

rectified for both latitude and time. The

latter adjustment is made as follows

:

0''
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To rectify for time rotate the globe till the E.A.M. is 0'' 34"".

It will be found that the constellation of Orion has just risen

above the eastern point of the horizon.

Compare the form of this solution with that

of Example 13, which is the inverse of this,

the rising of a star being given and the

standard time sought.

PROBLEMS INVOLVING THE USE OF

THE NAUTICAL ALMANAC

Example 25. At Cambridge, November 30,

1904, at 5"^ 15™ p.m., standard time, a bright

star is seen due southwest about 10° above

the horizon. No other stars being visible in

the twilight, it is desired to identify the star.

E. Std. T. . . .

Red. for Long.

Camb. M. T
Eq. of T. (subtract from App. T.) .

App. T

Fig. 59. Orion rising : Cam-
bridge, November 10, 9 P.M.,

Std. T.

E.A. of Sun

Camb. Sid. T.

5h 15m
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in twilight. The exact point being marked is brought to the

meridian and found to be in E.A. IS'' SG"- and Decl. - 23^° (Fig.

61). The fact that its position is very near the ecliptic suggests

that it may be a planet, and on consulting the Almanac it is

found that on November 30 the right ascension of Venus is 19^

4™ and its declination — 24°.7, or within about 2° of the observed

place.

Example 26. Which of the planets that are visible to the naked

eye are above the horizon at Cambridge at 8 p.m., standard time,

October 1, 1904 ?

From the Nautical Almanac are taken the following data for the

given date :

Mercury . ... . .

Venus ... . •

Mars

Jupiter

Saturn ....

K.A.
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Example 27. At what standard time does Jupiter set at Cam-
bridge December 25, 1904?
By the tables in the Nautical Almanac, we find that on the

given date the right ascension of Jupiter is 1" 17™ and its declina-

tion + 6°.8. Marking this place on the globe and bringing it to

the western horizon, the E.A.M. is T^ SS™, which is the sidereal

time. Converting to standard time:

Sid. T. . .

Sun's R.A. by globe

App. T. . . .

Eq. of T. . . .

Camb. M. T.

Eed. for Long. . .

Std. T. ...
Or

7h 38m

18 12

13
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Fig. 64. Moonrise at Cam-
bridge December 25, 1904

:

E.A.M. 2' IS"

This gives as the approximate time of moonrise 7'' 28", E. Std. T.,

or 12" 28"', G.M.T., and finding the moon's place for this time,

E.A. 9" 11", Decl. + 13°.9, we better our result by the computation

shown in the third column, which gives

1^ 45", E. Std. T., or 12'' 45", G.M.T. "With

this value we find the moon's place 9i^ 13",

+ 13°.9, and compute as in the last column,

finding E. Std. T. = 7'' 50".

As this is within ten minutes of the time

for which the data were assumed, and since

in ten minutes the moon's right ascension,

as shown by the difference column, changes

by 24',— a quantity too small to be surely

measured on an ordinary 10-inch globe,—
we may regard the last solution as suf&-

ciently accurate.

It would appear that the two last results

sliould be in closer agreement, since the difference in the assumed

times is only seventeen minutes ; the two first measures, however,

were not made with care, as only approxi-

mate values were sought.

It is obviously an advantage to estimate

the approximate time of moonrise as closely

as possible before beginning the solution

:

this may be done by noting the age of the

moon (page IV of the month) and remem-

bering that the moon rises and sets about

48", or 0\8, later each night than the night

before, and that at new moon sun and moon
rise and set together. Assuming that the

sun rises at 6 a.m. and sets at 6 p.m., stand-

ard time, we shall find an approximate value

of the standard time of moonrise or moonset

by adding to these times a number of hours

equal to eight-tenths of the moon's age in days. Thus, in the pre-

ceding problem, the moon's age being eighteen days on December
25, we add 0.8 x 18" = 14M to 6 a.m. to find the time of moonrise

;

Fig. 65. Moonset at Cam-
bridge December 18, 1904

;

K.A.M. 9>> 41'»
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this gives 8''.4 p.m. as the approximate time, which is within an hour
of the final result.

Example 29. Find the time at which the moon sets at Cam-
bridge December 18, 1904.

The moon's age is found by the Ephemeris to be eleven days

;

hence we add 9'^ to 6" p.m., and have as the approximate time of

moonset 15^ corresponding to 20^ G.M.T. We may record the

successive approximations as follows :

Assumed G.M.T.

Moon's R.A. and Deel.

R.A.M. at moonset

Sun's R.A. . .

App. T. .

Eq. of T.

Red. for Long.

Std. T

First
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which equals the change in the sun's hour-angle, or the time elapsed

between sunset and the end of twilight.

Example SI. At what hour, apparent time, does morning twi-

light begin at Cambridge June 21?

June 21. Suu's place 18° below E. horizon, R.A.M. . .

20ii 8"

Sun's K.A. by globe 6

App. T 1-18

Qp . . .
2 8 A.M.

Example 32. At what point of the horizon does the first glim-

mer of dawn appear in latitude 42°.4 on June 21 ?

Bringing the sun's place by trial to the altitude arc at a point

18° below the horizon (Fig. 67), the reading on the horizon at the

graduated edge of the altitude arc is E. 57°

N. = Az. 213° ; and as this is the nearest

point of the horizon to the sun when it is

18° below the horizon, it is at this point or

a little to the south that the first light will

appear.

Example S3. How many hours can the

sun shine into north windows June 21 in

latitude 41°?

liB^^lK' -^y *^® method of Example 15, it is found

that the apparent times of sunrise and sun-

H set on June 21 are 4:'^ 30" a.m. and 7^ 30"

FIG. 67. Dawn at Cambridge P-M., and by the method of Example 20,

June 21, at 21' s« A.M.: sun'a that the sun is in the prime vertical at 7''

56" A.M. and 4'^ 4" P.M. Hence from 4" 30"

to 7" 56" A.M. and from 4'' 4" to 7" 30" p.m., a total of 6" 52", the

sun shines on the north face of an east and west wall. The length

of the day is fifteen hours.

Example 34- August 20, in latitude 42|°, longitude 4'' 48", at

ten minutes past 10 ,\.m.. Eastern standard time, the sun begins to

shine upon the front wall of a building. How does the building face ?

Since at the given time the sun is in the same vertical plane

with the front wall of the building, the problem requires us to

determine the direction of this plane by finding the sun's azimuth,

which may be done as follows :
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Kectifying for latitude 42|-°, we have

:

Std. T. lOh lOm A.M =22>'10n>
Red. for Long, (from E. Std. T.) +12
Local M.T ~^ ^
Subtract Eq. of T. (additive to App. T.) _ 3
-A-PP-T 22 19
Sun's R.A. . ... 10 1

Sid. T '.'.'.'.'.'.'.'.] -T^^
Rectifying for this time and bringing the altitude arc to the

sun's place for August 20, we find the sun's azimuth to be 315°.

Hence the front wall is in a line from southeast to northwest, and
the building fronts southwest.

Example 35. What is the greatest north-

ern latitude in which all of the four bright

stars of the Southern Cross are visible? ^/^VWN^K
What must be.the time of year ? S^§^^*^^*\

Eectifying the globe for the equator, the

Southern Cross (aboutKA. 12", Decl. - 60°)

is brought to the meridian and the brass

meridian is moved in its own plane until i«=i^ „b

the lowest star is brought to the horizon at "'"'^^'l ^
»"

its south point. The elevation of the pole

above the north horizon is then read on the ' f

brass meridian and found to be 28°, which fig. gg. August 20 : std. t. lo'

is the required latitude. The star being still i""; ^.a.m. si. 20»; sun-s

in the same position, the altitude arc is then

used to mark the points of the ecliptic which are 18° below the

horizon. These are found to be at points occupied by the sun

January 2 and May 25, and between these dates, therefore, the

whole cross may be above the horizon in latitude 28° in the full

darkness of night, the sun being below the twilight limit.

Example 36. What is the latest date at which we can see Sirius

in the evening twilight in latitude 42°?

Sirius is visible when the sun is about 10° below the horizon, and

cannot be seen later than the day on which he sets at the instant

that the sun is 10° below the horizon.

Rectifying for 42° and bringing Sirius to the western horizon, we

find that the point of the ecliptic which is 10° below the horizon is
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the place occupied by the sun on May 15, which is, therefore, the

required date.

Example 37. Bet-ween what dates is the sun visible at midnight

at the North Cape, in latitude 70° north?

Eectifying the globe for 70° north and rotating the globe slowly,

it is found that points on the ecliptic in longitudes 58° and 122° can

be brought exactly to the north point of the horizon ; any point

between these may be brought to the meridian below the pole and

above the horizon. The dates at which the sun occupies these posi-

tions are May 19 and July 25, and between these dates the sun will

always come to the meridian at midnight above the horizon.

Example 38. Illustrate the " harvest moon " by finding the time

of moonrise at Edinburgh, latitude 56°, on successive dates about

the time of full moon, September 24, 1904.

As only approximate results are desired, we may take from the

Ephemeris the moon's place for 6'' p.m., G.M.T., and solve as follows:

1904
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Therefore the full moon at the time of the vernal equinox rises
about one hour and twenty minutes later each night. (Notice and
explain the difference in the accuracy attained in these two
examples.)

Example Jfi. Find the rate at which 8 Orionis is changing its

azimuth at rising and setting in latitude 42°.

Rectifying for 42° and bringing S Orionis to the eastern horizon,

we find E.A.M. = 23'^ 23'°
; Az. = 271°. Increasing the hour-angle

half an hour by making E.A.M. = 23'' SS", we find, by the alti-

tude arc, Az. = 276°. Bringing the star to the western horizon, we
have E.A.M. =11" 24>"; Az. = 89^°. Decreasing the hour-angle

by making E.A.M. = 10'> 54-", we find Az. = 84^° half an hour

before setting. In both cases the diurnal rotation causes the

azimuth to increase at the rate of 5° in half an hour.

By solving the same problem for stars in various parts of the

heavens, as, for instance, Vega, y Pegasi, Antares, and a Gruis, it

appears that stars of whatever declinations, when near the horizon,

are increasing their azimuths by about 10° per hour in latitude 42°.

(This is the rate at which the plane of the pendulum appears to

revolve in Foucault's experiment.)

Example Jfl. To mark the hour-lines on a horizontal sundial for

use in latitude 42°.

The gnomon of an ordinary sundial (Fig. 69) is directed toward the

pole, and its shadow at apparent noon falls upon the horizontal dial

on the line of XII hours, which, when

properly adjusted, lies in the direc-

tion of the meridian. The shadow

at that time is in a line drawn through

the foot of the gnomon toward azi-

muth 180°. It always passes through

the intersection of the gnomon with

the dial and, continually shifting ^"^^ ''
^tuful^-^""''''''

toward the east, at any instant lies

in the plane containing the sun and the gnomon. This plane cuts

the celestial sphere in the sun's hour-circle. The shadow, therefore,

is a line which passes through the foot of the gnomon and whose

azimuth is that of the intersection of the sun's hour-circle with
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the plane of the horizon. For a given hour-angle the position of

this line will be the same whatever the position of the sun upon

its circle, and is therefore the same for a given apparent time

whatever the time of year.

We may find the azimuth of the intersection of a given hour-

circle with the horizon by means of the globe as follows. Rectify-

ing the globe for 42°, the vernal equinox is brought to the meridian,

so that the equinoctial colure cuts the horizon at azimuth 180°.

In this position E.A.M. is 0"^, and the azimuth of the shadow is

180°. Increasing the hour-angle of the colure by successive incre-

ments of 15°, we have the following values for the azimuths of

the hour-lines :

FOK
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distance " of the line of intersection of the two planes, and this is

equal to the zenith distance of that part of the same line which
lies above the gnomon.

This problem therefore requires us to find

the zenith distance of the intersection of the

sun's hour-circle with the vertical plane for a

given hour-angle of the sun, and may be solved

with the globe as follows :

Rectify the globe for latitude 42°, and adjust

the altitude arc to the zenith with its foot at

azimuth 66° on the horizon ; its plane then

corresponds to that of the dial.

Bringing the vernal equinox to the meridian, E.A.M. = 0^, the

equinoctial colure intersects the altitude arc at zenith distance 0°.

Increasing the hour-angle of the colure, as in Example 41, we have

successively

Fig. 70. Vertical Dial,

Latitude 42°
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Rectifying the globe for latitude 42°, bringing the sun's place to

hour-angles which correspond to the successive hours from 8 a.m.

to 6 P.M., and measuring its altitude and azimuth in each position

by the altitude arc, we have the following results :

App. Time
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Fig. 72 shows the shadow path as thus constructed, and it is
evidently a straight line. This will always be the case on the day
of the equinox, when the sun is in the equator and its diurnal path
IS consequently a great circle.

Fig. 72. Path of Shadow

THE HOUK-INDEX

The globe is usually provided with an arrangement by means of
which approximate solutions may be made of problems involving
time without the use of the graduations of the equinoctial.

This process is so simple that its explanation might well have
preceded that of the method of finding the sun's hour-angle given
on page 112 and used in Problem 7. It is, however, very inaccurate,

and should only be chosen where an error of several minutes is

unimportant.

The most convenient form given to the attachment is that of a

small pointer fixed to the brass meridian in such a manner that it

revolves about the same center as the polar axis, but with sufficient

friction to keep it fixed in any position where it may be placed.

This pointer, or " hour-index," lies close to the surface of the

globe, which revolves freely under it. The end of the index lies

over a small circle on the globe, about 15° from the pole ; and this

circle is graduated into hours and quarters in two groups of 12

hours each, numbered in the same direction as the graduations of

the equinoctial.

The following example illustrates the use of the hour-index,

which in this case gives sufiiciently good results with less trouble

than the method already explained.

Example 44. Find the apparent times, October 1, 1904, of rising

and setting of the planets whose places are given on page 130.
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Mark the places of the planets and of the sun ;
bring the latter to

the meridian and set the hour-index to read XII noon. Rotate the

globe through any angle, and the reading of the index will equal

the hour-angle of the sun in its new position, and thus will give

directly the corresponding apparent time.

We may, therefore, rapidly determine the apparent time of rising

and setting of all the planets by bringing each in turn to the eastern

and western horizon and noting the reading of the hour-index.

The hour-index may be adjusted to give local mean time or

standard time directly by making it read the local mean time or

standard time of apparent noon when the sun is brought to the

meridian. Thus, for October 1, at Cambridge, longitude 4*^ 44™ :

App. T. of App. noon ...
Eq. of T ...
Camb. M. T. of App. noon ... ...
Red. for Long . . . .

Std. T. of App. noon . . . 11 34

And the index should be set to read ll"* 34™ when the sun is on

the meridian, in order to give Eastern standard time.

12h



CHAPTER X

THE MOTIONS OF THE PLANETS

It has been the aim of the preceding chapters to show, how the
diurnal motion and the motion of the sun and moon among the

stars may be studied in such a manner that the student shall acquire

and fix his knowledge in large part by his own observations.

There remains to be considered the motion of the planets, which
cannot be studied in the same way because they move so slowly

that a long time would be required to obtain a sufficient number
of observations on which to base a satisfactory theory. It is of

course desirable, however, during the continuance of the observar

tions on the moon and stars to include the planets in order to

establish a few fundamental facts, such as that they never appear

far from the ecliptic and that in general they move from west to

east like the sun and moon, but that when opposite the sun, so

that they come to the meridian at midnight, they are moving from

east to west among the stars. Their places in the heavens should

be occasionally observed, for comparison with the places derived

from the theory which forms the subject of the present chapter.

In treating of this theory we shall first assemble the few prin-

ciples which have been shown to account for the observed motions,

and shall then show how these principles may be applied to the

graphical solution of problems involving the determination of the

place in the heavens of a planet as seen from the earth at any

given time. These problems ' serve to illustrate and explain the

phenomena resulting from the planetary motions, as the globe

problems of the preceding chapter serve for those resulting from

the diurnal rotation of the earth.

Results of the Law of Gravitation In consequence of the attrac-

tion of the sun, each planet describes an ellipse, having the sun in

one focus ; this is "Kepler's first law." The mutual attractions of

the planets produce « perturbations " of their motion, but in no case

143
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are these perturbations sufficient to alter the place of the planet

by so much as one degree from its place as determined by the sun's

attraction. Jupiter may be displaced about 0°.3 and Saturn nearly

0°.8 ; but with this exception no displacement of a planet amounts

to 1°. The asteroids are subject to much greater perturbations.

The orbit of each planet is in a plane which remains nearly fixed,

and the planes of all the orbits are so nearly coincident with the

ecliptic that the projections of their paths on the ecliptic are no

more distorted than the roads of a moderately rugged country are

distorted in their representations on an ordinary plane map. This

fact makes it as easy to determine their motions by an accurate

map of their orbits on the plane of the ecliptic as to follow the

motion of a traveler over a well-charted country, when his point

of departure and rate of travel are known.

PROPERTIES OF THE ELLIPSE

An ellipse may be drawn by putting two pins upright in a board,

as in Fig. 73, laying a knotted loop of thread on the board so as to

include both pins, and then putting the point of a well-sharpened

pencil on the surface inside the loop. Let the pencil be moved out

Fig. 73. Drawing an EUipse

so as to form the loop into a triangle, and then drawn along the

surface so as to pass successively through all the points which it

can reach without allowing the thread to become slack. The curve

which it follows will be an ellipse whose shape and size will depend

only on the distance between the pins and the size of the loop.

The form of the curve is shown in Fig. 74.

Fi and F^ are the foci, AB the major axis, and C, which bisects

both FiFj and AB, is the center of the ellipse. PF^ is the radius
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vector from any point P to F^, and PF^ the radius vector to F^.
They are usually represented by r^ and r^. r^ + r^ is a constant for
all points of the ellipse, being always equal to the length of the
thread minus F^F^. Tor

the point A

n + r^ = AF-, + AF^
;

and since from the sym-

metry of the curve B|

AF^ = BF^,

ri+ ri= BF^ + AF^= AB.

Fig. 74. Fundamental Points and Lines

^ C is usually represented

by a, and CF^ or CF2 by c.

Since 2 c equals the

distance between the foci, and 2a + 2c the length of the thread,

the shape and size of the ellipse are completely fixed by the values

of a and c. The ratio c/a is called the eccentricity and is repre-

sented by e ; it is always less than unity. The line along which

the major axis lies is called the line of apsides.

To draw a Given Ellipse.— Let it be required to draw an ellipse

whose semi-major axis is one inch, and eccentricity i, with one

focus at the point Fj of Fig. 75, and with its major axis inclined

30° to the horizontal.

Draw the line of apsides 3IN at the proper angle. Since e = i, we

locate C one-fourth of an inch from F^ on the line of apsides.

Take F2 at an equal distance beyond C, make the total length of

the thread 2^ inches = 2 a -|- 2 c, and draw the ellipse as shown in

the figure.

The dotted line surrounding the ellipse is a circle drawn about

C as a center with a radius of one inch (equal to the semi major

axis). It is worthy of notice that the ellipse differs but little

from this circle, the greatest distance between the two being

about y|^ of an inch. With a less eccentricity the agreement of

the two curves is closer. For e = 0.10 the difference is but .005

of the semi major axis, so that an ellipse of that eccentricity whose

semi major axis is two inches differs at no point more than y^^ of
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an inch from a circle struck about its center with a radius of two

inches. If the orbits of the planets are drawn with their true

eccentricities and with a line 0.01 inch in width, and in each case

a circle is struck with radius a about the center of the ellipse, and

having a width of .01 inch, no white space will be anywhere visi-

ble between the two lines unless the diameter of the circle is greater

Bbrizontal 'J

Fig. 75. Ellipse drawn with Given Constants

than about 1 inch for Mercury, 4J inches for Mars, 17 inches for

Jupiter, and 12^ inches for Saturn. For Venus and the earth the

circles may be several feet in diameter. The orbits may therefore

be represented by such circles with a considerable degree of

accuracy.

MEAN AND TRUE PLACE OF A PLANET

Having considered the geometrical properties of the planetary

orbits, it is next in order to inquire as to the law which regulates

the motions of the planets in their orbits.

Since the sun is at one focus of the orbit, the planet's distance

from the sun varies continually. It is nearest the sun at the peri-

helion point, which is at one extremity of the major axis. Aphelion
occurs at the opposite end of the major axis, and the planet is then
at its greatest distance.
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Kepler's second law states that the planet moves in such a way that
Its radius vector sweeps over equal areas in equal times. The appli-
cation of this principle will be evident from the following illustration

Fig. 76 represents the orbit of Mercury in its true proportions.
The period of the revolution of the planet is eighty-eight days, in
which time the radius vector sweeps over the whole area of the
ellipse. To pass from perihelion to aphelion would require forty-
four days, or one-half the period, since the area described is one-
half the area of the whole ellipse. It is not difl&cult to fix very
nearly the point reached by the planet twenty-two days after pass-
ing through perihelion. It will then have accomplished a quarter
of a revolution, and be at

such a point P that the area

ASP is one-quarter of the

ellipse, or one-half of APBS,
so that APS equals BPS.

It may be shown that this

point must be very nearly in

the line Pf drawn perpen-

dicular to the major axis

through /, the "empty"
focus of the orbit, as it is

sometimes called.

Assuming P to be on this

line, and drawing a perpen-

dicular Sk through the focus

occupied by the sun, and also the radius vector PS, we have from

the symmetry of the ellipse. Area ASk equal Area BfP, and the

triangle PkS evidently equals the triangle PfS. The difference of

the two areas ASP and BSP is therefore the segment of the ellipse

cut off by the chord Pk ; this segment is so very small that the

area ASP is very nearly equal to BSP.

The angle ASP through which the planet has moved about the

sun since perihelion is called its "true anomaly." In this case it

is about 110°. We may now infer that the true anomalies of Mer-

cury 22, 44, 66, and 88 days after perihelion would be about 110°,

180°, 250°, and 0°, respectively.

Fig. 76. Equal Areas in the Ellipse
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It is convenient to refer the motion of the planet to that of a

hypothetical planet moving in the orbit in such a way as to be at

perihelion with the real planet and describe equal angles in equal

times ; thus the anomaly of the so-called " mean planet " after 22,

44, 66, and 88 days would be 90°, 180°, 270°, and 360°, respectively.

The Equation of Center. — The quantity to be added to the anomaly

of the mean planet, or briefly, the " mean anomaly " of the planet, in

order to find its true anomaly, is called the " equation of center "

;

in the cases above given it is for the four positions 0°, + 20°, 0°, and

— 20°. It is always positive for values of the mean anomaly between

0° and 180°, and negative

for values between 180°

and 360°. It appears from

Fig. 77, in which P and P'

mark the true and mean

places of the planet re-

spectively, that at all

points from perihelion A
to aphelion B, the true

anomaly ASP is greater

than the mean anomaly

ASP', while from aphelion

to perihelion ASP is less

than ASP'.

The value of the mean

anomaly being given for

any time, its value for any other time is easily found, since it

increases uniformly from 0° to 360° in the time required for the

planet to make one revolution.

The mean anomaly being known, we may pass to the true anomaly

by means of a table of the equation of center (page 174), in which

the value of the latter is given for each degree or ten degrees of

the planet's mean anomaly.

The computation of these tables lies far beyond our scope, but it

is worth while to note that approximate values of the equation of

center may be found by a graphical method, which rests upon the

principle that in describing equal areas about one focus of an

Fig. 77
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ellipse of small eccentricity, a planet describes very nearly equal
angles about the other focus.

If then the ellipse be carefully constructed on a large scale, say
with a major axis of ten inches, and through the empty focus lines

be drawn making angles of 10°, 20°, 30°, etc., with the line of

Fig. 78

apsides, these lines will cut the ellipse at the places occupied

by the true planet when its mean anomalies are 10°, 20°, 30°, etc.

Fig. 78 shows one-half of the orbit of Mercury divided into six

equal parts in this manner.

The true places being thus fixed, and lines drawn from each to

the sun, the true anomalies may be read off with a protractor ; and

by comparison with the mean anomalies the equation of center for

each ten degrees of mean anomaly may be determined.

MEASUREMENT OF ANGLES IN RADIANS

It has been assumed that the student is familiar with the ordi-

nary method of measuring angles in degrees. For some purposes

it is convenient to select a different unit, the " radian."

One radian is the angle subtended by an arc whose length

(measured by a flexible scale laid along the curve of the arc) is

equal to that of the radius. This angle measured in the ordinary

way is found to be 57°.3 = 3438', or 206,265".

If the length of an arc a is known, and also the radius of the

circle r, the angle subtended by the arc is a/r (arc -f- radius) radians.

Thus in a circle two feet in diameter, an arc of one inch subtends

an angle of 1/12 radian, - 6 inches of 0.5 radian, 1 foot of 1 radian,

etc. Since 1 radian equals 57°.3, an arc of one inch in the above circle
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subtends 1/12 x 67.3°; and, in general, radians are transformed to

degrees, minutes, or seconds of arc by multiplying by 67.3, 3438,

and 206,265, respectively; and degrees, minutes, or seconds to

radians by dividing by 67.3, 3438, and 206,266, respectively.

The use of the radian is especially convenient in problems in-

volving an angle so small that the corresponding arc nearly equals

its chord or the perpendicular drawn from one extremity of the arc

to the radius drawn through its other extremity. The method is

illustrated by the following instances :

1. The moon's distance is 240,000 miles, and its angular diameter

is 31', or 31/3438 radian. Its diameter in miles is given by the

equation

^ =24^ = sis-
^^""'^ ^ = ^^^^ '^^''' approximately.

2. The height of a tree is 30 feet, and the length of its shadow

is 150 feet. The altitude of the sun is

a/r = 30/160 = 0.2 radian = 11°.46.

The true value obtained by trigonometrical computation is 11°.64,

differing by .08°, and this approximate method will give results

within 0°.l so long as the angle does not exceed this value.

3. By means of a sextant the angle between the water line of a

distant war ship (Fig. 79) and the top of its military mast is found

to be 17' 10". The height of the mast is known to be 120 feet.

Assuming this height to be equal to the arc subtended by the
measured angle, we have

17' 10" = 0.006 radian = - = height of mast
r distance of ship'

and the distance of the ship is about 8000 yards.
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DIAGRAM OF CURTATE ORBITS

Fig. 80 represents a diagram of the oi-bits of the five inner

planets projected on the plane of the ecliptic, which serves to solve

many problems regarding the planetary motions. The diagram is

of convenient size for actual use, if its dimensions are such that

one astronomical unit equals about | of an inch.

In order to show how small is. the distortion of the orbits as pro-

jected, we may compare the length of the radius vector to any

point in the orbit with that of its projection on the ecliptic, which

is called the " curtate " distance from the sun.

Even in the case of the orbit of Mercury, which has the greatest

inclination, the curtate distance differs from the true distance at

most by y^^, in the case of Venus by less than ^^jj, and in the

case of all the other planets by less than t^Vt- I^ ^^^ scale of the

diagram is such that one astronomical unit equals 1-|^ inches, no

radius vector drawn in any one of the " curtate " orbits will differ

from the corresponding radius vector drawn in the actual orbit by

so much as ^J^ of an inch ; and by referring to the data given on

page 146 it will be seen that on that scale the elliptic orbits may

be represented with considerable accuracy as circles.

The position of the line of apsides is fixed by the longitude of

perihelion, page 174; the distance o of the center of the ellipse

from the sun is found from the ratio c /a = e, and a circle struck

about the center with a radius a very closely represents the curtate

orbit ; the distances c and a are of course to be laid off from the

scale of astronomical units.

To draw such a diagram is a useful exercise, and by careful draw-

ing and erasure a single diagram may serve for many problems, but

it is convenient to have several printed copies when it is desired to

preserve the solutions.

It is also convenient to have diagrams on which an astronomical

unit equals 2^, f , and f inches, respectively, the first extending to the

orbit of Mars, the second to that of Jupiter, and the third to that

of Saturn. The larger scale should be used for problems referring

to M*ercury and Venus, while the smaller scales are required for

the major planets.
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ELEMENTS
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On the plan of each orbit the symbol of the planet is placed at
the perihelion point, whose position is thus approximately known
at a glance.

That part of the orbit which is above the plane of the ecliptic is

marked with a full line, and the part below is marked by a broken
line. The line of nodes is therefore determined as a line joining
the two points where the character of the line changes. This line,

of course, passes through the sun.

The inclinations of the orbit planes are shown by the triangles

which appear below the diagram, each marked by the symbol of

the planet to whose orbit it pertains. A scale of astronomical units

is printed at the bottom.

The attached tables (see page 174) give the values of the elements

of each orbit and certain other quantities which are required in

finding the place of the planet in its orbit at a given time.

Measurements may be made on the diagram between any two
points by laying a strip of paper with its straight edge through

the points, and marking the edge of the strip opposite each point.

By laying the straight edge along the scale the distance in astro-

nomical units is found. Instead of the paper strip a pair of com-

passes may be used.

The map shows the orbits as they would be seen from the north

side of the ecliptic, and the motions of the planets as thus seen are

always counter-clockwise about the sun. The plane of the map is

that of the ecliptic, and it is so oriented on the paper that hori-

zontal lines drawn from left to right would strike the celestial

sphere at the vernal equinox. Therefore the direction which on

an ordinary terrestrial map would be east on this map is toward

longitude zero ; up is toward longitude 90°, down toward longitude

270°, and the direction of any other line on the map is fixed by

determining the angle which it makes with the line drawn to the

vernal equinox. Thus, the line in Fig. 81 from E to M makes an

angle of 45° with the line SR, and is therefore directed toward

longitude 46°, and EJ is directed toward longitude 260°. By draw-

ing lines through the sun parallel to EM and EJ, respectively, the

longitude may be read off directly on the circle which bounds the

diagram.
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Pig. 81. Direction of a Line fixed by Longitude

To find the Elements of an Orbit. —The elements of the planetary

orbits may be obtained from measurements on the diagram. These

elements are as follows

:

a Semi-axis major of the ellipse or mean distance.

e Eccentricity of the ellipse = c/a, where c is distance of

focus from center.

TT Heliocentric longitude of perihelion.

Q Heliocentric longitude of node.

i Inclination of plane of orbit to plane of the ecliptic.
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To find a draw a straight line from the perihelion point of the
orbit through the sun to cut the orbit at the aphelion point. This
is the line of apsides. Measure the distance from perihelion
to aphelion along the line of apsides in astronomical units. This
gives the major axis of the ellipse, one-half of which is the value
of a.

To find c, bisect the major axis and thus fix the center of the
ellipse. The distance from focus to center may then be measured
in astronomical units. This is the value of c ; it is not regarded

as one of the elements, since it is fixed by the values a and e.

To find e, determine c/a from the above measurements.

To find TT, prolong the line of apsides through the perihelion

point ; the reading at the point where it cuts the graduated circle

is the longitude of perihelion.

To find Q ,
prolong the line of nodes through the point where

the planet moving counter-clockwise passes from the dotted por-

tion of the orbit to the full line. The reading at the point where

this line cuts the graduated circle is the longitude of the ascending

node.

To find the inclination i, measure the angle of the proper triangle

by a protractor ; or, more accurately, measure the altitude h and

the base b of the triangle ; h/b is equal to the inclination in radians.

57°.3 h/b = i in degrees.

The following measurements were made on the orbit of Jupiter

:

Sun to perihelion .

Sun to aphelion

Major axis ....
a Semi-axis a . .

Center to perihelion

Focus to perihelion

c Center to focus c

4.96

5.42

10.38

5.19

5.19

4.96

0.23

0.23

5.19
= 0.044

T The line of apsides cuts the circle at 12°. 7.

n The line to ascending node cuts the circle at 99°.4.

i The altitude of the triangle is 0.13 and the base 5.43; hence

i = h/b'= 0.13/5.43 = 0.024 radian = 57°.3 x 0.024 = 1°.37.
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PLACE OF THE PLANET IN ITS ORBIT

If the heliocentric longitude of a planet is known, it may be

plotted at its proper place on the diagram by drawing a line from

the sun to that division of the graduated circle which indicates the

given longitude ; the intersection of this line with the orbit gives

the required place. When, for instance, the heliocentric longitude

of Jupiter is 280, the intersection falls very close to the descend-

ing node. In this particular case the place of the planet is com-

pletely known, since it is in the ecliptic. Usually the planet is

Fig. 82. The Z Coordinate

many millions of miles from the ecliptic, but its exact distance may
be easily found by the use of its inclination triangle.

This will appear by consideration of Fig. 82, which represents a
diagram in which the orbit of Jupiter has been cut through along
the heavy line, and the part of the orbit which is above the ecliptic

turned up around the line of nodes so as to be at the proper incli-

nation. The exact angle is insured by supporting it by wedges
having the proper angle.
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The height of the planet at P above the plane of the ecliptic,

which we shall call its « Z coordinate," or simply Z, is evidently
the altitude of a right-angled triangle whose small angle is i (the
inclination of the orbit), and whose base is the line drawn from
the place of the planet on the diagram to the line of nodes. This
line (which practically equals the hypotenuse) we will call U.

To find Z, then, it is sufficient to measure U on the diagram and
to lay off the same distance along the horizontal side of the incli-

nation triangle. The vertical line drawn to the hypotenuse from
the point thus fixed gives the length of Z in astronomical units.

A far more accurate method is to make use of the obvious relation

Z/U=im radians, or 57.3 Z/U=i\.n degrees. Thus, for Jupiter

Z =U X 1.3/57.3 = 0.023 JJ.

TO FIND THE TRUE HELIOCENTRIC LONGITUDE OF A
PLANET

centre. ^s'^~

To find the true position of any planet at a given time we must
first know its mean anomaly at that time, and then, by applying

the equation of center, ^ Longig

find the correspond-

ing value of the true

anomaly which enables

us to place the planet Eg
at the proper position*

in its orbit.

Thus, if the earth's

mean anomaly is 70°,

we find by the table,

page 174, that the equa-

tion of center is -|- 1°.8,
r iij. oo

and hence the true

anomaly is 71°.8. Since the longitude of perihelion is 101°.2, the

true heliocentric longitude is ior.2 + 71°.8, or 173°.0, and this

value enables us to plot the earth in its proper place on the

diagram, Fig. 83.
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We may find the mean anomaly if we know the number of days

elapsed since perihelion, and the mean daily motion along the orbit.

The fact that the planets move very nearly in the ecliptic, so that the

motion in the real and curtate orbit is very nearly the same, makes

it easier to proceed in a somewhat different manner, as follows :

In the Table of Elements appended to the chart is given the "mean
daily motion" (in heliocentric longitude), which is found by divid-

ing 360° by the period in days. This quantity enables us by a simple

multiplication to find the mean motion, or increase in heliocentric

longitude of the mean planet in any given number of days.

Knowing the mean (heliocentric) longitude at any given epoch,

the mean longitude at any later date is found by addition of the

mean motion in the elapsed time. The Table of Elements supplies

the necessary " longitude at the epoch " for Greenwich mean noon,

January 1, 1900.

We may summarize the process of finding the planet's true helio-

centric longitude as follows :

Let E be the longitude at the epoch,

' elapsed time in days,

'' mean daily motion,

' longitude of perihelion,

' mean anomaly,

' true anomaly,

' true longitude (heliocentric).

First find the mean anomaly at the time t, as follows :

/ii = Mean motion in elapsed time,

E -\- ij.t = Mean longitude at given date,

E + fit — -77 = Mean anomaly.

With this value of the mean anomaly find the equation of center
by the table, and since

True anomaly = Mean anomaly -|- Equation of center,

°^ v = E + fit~Tr + Equation of center,

and True longitude = v + tt, we have directly

True longitude = E + ,j.f + Equation of center.

The form of the computation is shown in the solution of the
following problem

:

t

TT

M
V

I
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Find the true place of Mars and the earth May 8, 1905, at
Greenwich, midnight.

The elapsed time may be found as follows :

Gr. Mean Noon. Jan. 1, 1900, to Jan. 1, 1901 365 days

1902 365

1903 365

1904 365

1905 366

Jan. 1, 1905, to Feb. 1, 1905 31

Mar. 1, 1905 28

Apr. 1, 1905 31

May 1, 1905 30
Noon. May 1 to Midn,, May 8, 1805 7.5

Elapsed time = 1953.5 days.

For Mars nt = 0°.52403 x 1953.5 = 1023°.69.

For the earth id = 0°.98561 x 1953.5 = 192.5°.39.

Mean longitude Jan. 1, 1900 = E . . .

Mean motion 1953.5 days = id

E + lit

Subtract complete revolutions . . .

Mean longitude May 8.5, 1905 . .

Subtract longitude of perihelion ?r

Mean anomaly M . . . .

Equation of center . . ...
True longitude l = E + nt + Equation of center 227.60 227.56

It will be noted that in each case the value oi E + fxt has been

diminished by an integral number of revolutions : 3 x 360° for

Mars and 6 x 360° for the earth. It appears, also, that the num-

bers inclosed in brackets enter the computation only for the purpose

of obtaining the equation of center which is then applied directly

to the mean longitude following the equation

1 = E + /xt + equation of center.

On plotting the planets it appears that Mars is exactly opposite

the sun, as indeed is evident from the fact that the earth and Mars

are in the same heliocentric longitude. The Ephemeris gives May 8,

8 P.M., G.M.T., as the time of opposition. The actual distance

between Mars and the earth, as measured on the diagram, is 0.56

astronomical units, or fifty-two million miles.

Maks



160 LABORATORY ASTRONOMY

The planet may be plotted with a very fine-pointed, hard pencil,

against the edge of a ruler passing through the sun and the point of

the graduated circle whose reading equals the planet's true helio-

centric longitude. It is quite an advantage to have the ruler of a

transparent substance in order that its edge may be correctly placed

on the graduations.

A better method, however, is to put a pin through the sun's place

firmly into the drawing board or table, and pass around the pin a

long loop of smooth black thread. The other end of the loop is

Fig. 84. Plotting with a Loop

held between the thumb and forefinger, with the threads slightly

separated (about j'^ of an inch). The loop is then drawn taut, and

the middle of the white space between the threads may be bisected

by the proper point on the graduation ; the place of the planet is

then marked by putting the point of the pencil exactly midway

between the threads where they intersect the orbit (Fig. 84).

The planet having been placed in its true position on the orbit

by plotting it as above, so that its curtate radius vector is drawn

toward the true heliocentric longitude, its place is completely known
if wemeasure U and find Z, as on page 167. The usual method of

fixing the distance of the planet from the ecliptic is to give its

heliocentric latitude h, or angular distance from the ecliptic, which

may be found thus (Fig. 85) :
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5 = Z/r = angular distance (radians) of planet above ecliptic as
seen from the sun. Combining this with Z=Uxi (radians), as
explained on page 157,

b (radians) = — i (radians)

;

and turning each side of the equation
into degrees by multiplying by 67.3, we
have

(57.3 6)°= ^X (57.3 1)°,

or b°=-i°.
r

The inclinations are so small that the

latitude is always well determined by
this method. Pig. 85. Heliocentric Latitude

GEOCENTRIC POSITIONS

When a planet has been placed on the diagram by its heliocentric

coordinates, we may find its position as seen from the earth ; that

is, we may find the longitude and latitude of that point of the

celestial sphere upon which it is seen projected by an observer

upon the earth.

The line drawn /row the earth to the planet is called the "line of

sight," and its projection on the ecliptic is the line from the earth

to the planet on the diagram. If this line is horizontal, it cuts

the celestial sphere at the vernal equinox, and the planet's geocen-

tric longitude is zero.

Geocentric Longitude The angle between the (projected) line of

sight and the line drawn to the vernal equinox is the planet's geo-

centric longitude. It is equal to the angle between the line of sight

and the line drawn from the sun to the zero of the graduated circle.

This angle may be measured in several ways

:

1. By prolonging the line of sight, if necessary, till it cuts the

line of equinoxes on the diagram, and measuring the angle with a

protractor.
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2. By drawing a line through the sun parallel to the line of

sight, and noting the point where it cuts the graduated circle.

3. The most accurate method is usually the following: Bring a

straight edge to pass accurately through the places of earth and

planet. Note the points of intersection with the graduated circle.

Fig. 86. Geocentric Longitude

Call the reading where the line of sight {from, earth to planet)

cuts the circle A, and the other (opposite) reading B. Then the

geocentric longitude of the planet is
" — 90, if A is less than

B; and
A+B

+ 90, if A is greater than B. This may be proved by

the theorem that the angle between two chords of a circle is meas-

ured by the half sum or half difference of the included angles,

according as they intersect inside or outside the circle.

Better than a straight edge is a fine line on a transparent ruler

(celluloid, glass, mica, tracing cloth), or a stretched thread laid over

the two points.

Fig. 86 illustrates the three methods, the heliocentric longitudes

of the earth and Venus being 150° and 90°, respectively. The angle

at C measured by the protractor is 13°, the line through S parallel

to .4JS cuts the graduated circle at 13.0, while the readings at A

and B are 20.0 and 186.0, so that~^ - 90° = 13°.0.

The Sun's Longitude and the Equation of Time It is an important

fact that, since the line of sight to the sun is drawn to a point
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whose heliocentric longitude is opposite to that of the earth, the

sun's geocentric longitude is always 180° + the earth's heliocentric

longitude.

The sun appears to move about the earth in an orbit whose ele-

ments are the same as those of the earth about the sun, except

that E and tt are each greater by 180°.

The sun's mean longitude is therefore 280°.67 + jxt and its mean
anomaly is 280°.67 + fti — 281°.2, where t is the number of days

since January 1, 1900, and /* is the earth's mean daily motion.

To find the sun's true longitude we add to the mean longitude

the equation of center taken from the table for the earth, and from

the true longitude we may find the R.A. by adding the reduction

to the equator (page 121). We may therefore write

:

Sun's E.A. = Sun's mean longitude + Eq. center + Red. to equator.

Sun's E.A. — Sun's mean longitude = Eq. center + Red. to equator.

And since the sun's mean longitude equals the E.A. of the mean

sun (page 92),

Sun's E.A. — E.A. of mean sun = Eq. center + Eed. to equator.

The first member of the last equation is the equation of time

whose approximate value may thus be computed for any date

:

Jan. 31, 1900. ;a« = 30 x 0°.9856 = 29°.67

E + ^t = 280°.67 + 29°.57 = 310 .24

E + fit-^ = 310°.24 - 281°.2 = 29 .04

Equation of center = + .97 + 0°.97

True longitude 311°.21

Eed. to equator + 2 .4

Equation of time + 3°-37

or 13.6 minutes to be added to apparent time.

Geocentric Latitude.—The geocentric latitude j3 of the planet is

the angular distance of the planet from the ecliptic as seen from the

earth. It is found by the same method as that used for finding the

heliocentric latitude b. (See Fig. 87.)

Draw the line A from earth to planet on the diagram. Z/A

equals the angle ^ in radians, and Z = U X i (in radians).
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Hence, by reasoning applied on page 161,

Fig. 87. Geocentric Latitude

The whole process of finding geocentric latitude and longitude

is illustrated in the following example :

To find the positions of the five inner planets at Greenwich

mean noon, July 6, 1907, the elapsed time from January 1,

1900, being 2742 days (see page 167).
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From diagram, A
B
U

» " A
From table, i

2

IT . „

130°.4

302°. 3

0.14

0.70

7°.0

126°.35

-1°.4

80M
266°. 9

0.22

1.60

3°. 4

83°. 5

- 0°.47

283°. 2

103°. 3

1.16

0.40

1°.9

283°. 25

- 5°. 51

111°.2

288°. 8

1.09

6.26

1°.3

110°.0

+ 0°.21

Fig. 88. Geocentric Places, July 6, 1907
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The signs attached to the latitudes are fixed by the fact that

Jupiter is in the full-line part of its orbit and therefore above the

ecliptic, while all the other planets are in the dotted parts of their

orbits and therefore in south latitudes.

Since the full line extends from the longitude of the ascending

node to that of the descending node, which is 180° greater, we may
also fix the sign of fi by the following rule :

From the true heliocentric longitude subtract that of the ascend-

ing node ; if Z — S < 180, the latitude is positive ; if Z — S > 180,

the latitude is negative. Thus, in the above example :
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if measured from the equinox of 1900. This "reduction to the
equinox of date" is 50" x ;;, or 0°.014 t, where t is the number of
years elapsed since 1900.

The Julian Day.— The process of computing the elapsed time used
on page 169 is tedious and liable to error where the elapsed time

is considerable. Where the interval between distant dates is to be

accurately determined astronomers find it convenient to make use

of the number of each day in the Julian period. It is sufficient

here to say that January 1, 4713 b.c, was the first day of this

period, and the Ephemeris gives each year the number of the

Julian day for January 1 ; thus, the 1st of January, 1900, was

No. 2415021 in the cycle. To find the number for any given

date, we turn to page III of the corresponding month, add the

day of the year (taken from the second column), and subtract 1.

The table on page 175 gives for each year from 1800 to 2000 a

number one less than that of the Julian day corresponding to Jan-

uary 1 of the given year. The subsidiary table for months gives

for each month a number one less than the day of the year cor-

responding to the first of the given month.

It is easy to see that by adding together the year number, month

number, and day of the month, we get the corresponding Julian

day. Thus we compute the interval from January 1, 1900, to July 6,

1907, as follows

:

Year number for 1900,

Month number for January,

Day of month,

Julian day,

2415020
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great as 8°, so that no serious error in the place will occur if the

strip is not exactly perpendicular to the ecliptic.

The place of the planet being thus marked on the globe, its right

ascension and declination may be determined, and problems relat-

ing to its diurnal motion, such as its times of rising and setting,

may be solved by the methods of Chapters VIII and IX.

CONFIGURATIONS OF THE PLANETS

The elongation of a planet is its distance from the sun along the

ecliptic as seen from the earth. It is therefore equal to the differ-

ence of the geocentric longitudes of the sun and planet. The elonga-

tion is measured either way from the sun up to 180°, at which

point the planet is at opposition, or opposite the sun. When the

elongation is zero the sun and planet are in the same longitude,

and the planet is in conjunction with the sun.

The symbols 8 and i are used for opposition and conjunction,

respectively. When the longitude of the planet is greater than

that of the sun it is east of the latter, and follows it in its diurnal

revolution. It is therefore above the horizon at sunset and is

said to be an "evening star," since it is visible in the twilight

after sunset except when near conjunction. On the other hand, all

planets whose longitudes are less than that of the sun precede it,

and they will be above the horizon at sunrise and therefore visible

at dawn, except when very near conjunction. They are then " morn-

ing stars," just as stars in eastern elongation are evening stars.

The geocentric longitude of the sun, July 6, 1907, is 103°.2 (since

the earth's heliocentric longitude is 283°. 2, page 164). The longi-

tude of Jupiter being 110°.2, its elongation is about 7° east, and it

is an evening star, though too close to the sun to be visible ; it will

become a morning star about July 14.

The elongation of Mars is very nearly 180°, and it is at opposi-

tion and becoming an evening star. The longitude of Venus is 84°.6

;

it is 18°.6 west of the sun and is a morning star. On referring to

the diagram (Fig. 88), and remembering that it moves more rapidly

than the earth, it is evident that it is approaching conjunction
'

beyond the sun ("superior" conjunction), after which it will pass
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to eastern elongations and be an evening star. Mercury's longitude

is 126°
; it is 23° east of the sun, and referring to the diagram, we

see that it is approaching conjunction between the earth and sun
("inferior" conjunction), after -which it will be a morning star.

The preceding principles enable us to find the place of a planet

at any given date, and thus to answer many of the questions which
continually suggest themselves to one interested in watching the

courses of the planets in the sky.

It is evident, for instance, from the problems solved on pages 159

and 164, that in 1907 the greater proximity of Mars to the earth

offers conditions for the study of its surface which are much more

favorable than those of the opposition of 1905.

The oppositions of Mars recur at an average interval of about

780 days, which is the synodic period of the earth and Mars, as

explained in the text-books of descriptive astronomy.

We may fix the dates of other oppositions approximately, as in

August, 1877, September, 1909, November, 1911, December, 1913,

etc., and by computing for the first and last days of those months a

closer approximation to the day of opposition may quickly be made,

and finally a careful computation for the exact date will fix the

time within a few hours. The geocentric place and the distance of

the planet may then be found.

It appears that favorable oppositions occur in the summer, and

that the planet is then quite a distance south of the equator, so

that it is far from the zenith of any northern observatory.

The satellites of Mars were discovered in 1877, and in the same

year an expedition was sent to the island of Ascension to observe

Mars for a determination of the solar parallax.

In conclusion we will consider the motion of Mars during the

summer of 1907, to illustrate the form which the computation takes

when many places are to be found at comparatively short intervals.

We first carefully determine the mean longitudes of Mars and

the earth for March 22 to be 235°.51 and 178°.74, respectively, and

then easily form the second column of the following schedule by

successive additions of 10°.48 and 19°.71, the mean motions of the

two planets in twenty days.
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The third column is formed for Mars by writing the longitude

of perihelion 334°.2 on the upper edge of a slip of paper and

placing it under the numbers of the second column successively,

subtracting from each to find the corresponding mean anomaly.

The same result is more easily obtained by adding in the same

way 25°.8 (360°—334°. 2) to each number in the second column.

The third column is checked by noting that the differences of the

successive values are 10°.48, which insures the accuracy of both

columns. The equation of center is taken from the table and

entered in the fourth column, and the true heliocentric longitude

found by adding corresponding numbers of the second and fourth

columns. The same process gives the earth's true heliocentric

longitude.

The labor is by no means proportionate to that required in

computing a single place, and the comparison of the successive

numbers of each column is an important aid in detecting errors.

Maks
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In order to form an idea of the path described by the planet

among the stars, the positions may be plotted on an ecliptic map, as

in Fig. 89, which shows the form of the loop in the constellation

of Sagittarius.

During March the motion of the planet is eastward, or in the

direction of increasing longitudes, and is said to be " direct." The

rate of motion diminishes from one-half degree per day at the out-

set to half that amount in May, and soon after the beginning of

June the planet reaches its iirst " stationary point " and begins to

move slowly in the opposite direction in longitude, or "retrograde."

Its continuous motion in latitude toward the south prevents it from

exactly retracing its path and causes it to describe a "loop."

Its velocity in the retrograde arc increases to a maximum of

a quarter of a degree per day at opposition early in July, and

then decreases until the second stationary point is reached about

August 9, when the planet resumes its direct motion.

The exact dates of the stationary points may be found by com-

puting a few places in the neighborhood of June 10 and August 9.

The Ephemeris gives the dates as June 6 and August 8.
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Table III—
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Table VII— The Julian Day

Add together the year number, the month numher, and the day of the month.

1800 2378496



IL MAECH, 1899.

AT GREENWICH MEAN NOON.



11. JANUARY, 1900.



JANUARY, 1900, III.

AT GREENWICH MEAN NOON.



iV,



JANUARY, 1900. vir.



VI. FEBRUARY, 1900.



xvm. FEBRUARY, 1900.





II. MARCH, 1900.

AT GREENWICH MEAN NOON.



n.



II. AUGUST, 1900.

AT GREENWICH MEAN NOON.





11. NOVEMBER, 1900.

AT GREENWICH MEAN NOON.



VENUS, 1900.








